Answer: a) 3.85 days
b) 10.54 days
Explanation:-
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = ?
t = time taken for decomposition = 3 days
a = let initial amount of the reactant = 100 g
a - x = amount left after decay process = 
First we have to calculate the rate constant, we use the formula :
Now put all the given values in above equation, we get


a) Half-life of radon-222:


Thus half-life of radon-222 is 3.85 days.
b) Time taken for the sample to decay to 15% of its original amount:
where,
k = rate constant = 
t = time taken for decomposition = ?
a = let initial amount of the reactant = 100 g
a - x = amount left after decay process = 


Thus it will take 10.54 days for the sample to decay to 15% of its original amount.
Answer:
According to Oxford Dictionaries "Precision" means "the quality, condition, or fact of being exact and accurate."
Explanation:
Hope this helps! :)
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
It's a hardness scale from 1-10 determining how easy or hard it is to scratch the mineral.
Remember that talc (like chalk or baby powder) is the softest and easiest to scratch then diamond being 10 is the hardest mineral to scratch or break or cut
We can solve this using Snell's Law which is represented by the equation:
sin θ₁ / sin θ₂ = n₂ / n₁
From the problem, we can substitute values and solve for the angle of refraction.
sin 19 / sin θ₂ = 1.65 / 1
θ₂ = 11.38°
The angle of refraction would be 11.38°.