Answer:
2 M
Explanation:
The equation for molarity is "M = moles/liters"
Potassium chloride's atomic mass is 74.55, meaning one mole of KCl is equal to 74.55g. In the equation, 298g of KCl is being used. To find out how many moles this is, multiply 298g of KCl by (1 mol/74.55g of KCl) to get 4.0 moles. Now you can use the equation for molarity.
M = 4.0 moles/2 Liters
Good luck on this one brp
Explanation:
A covalent bond is formed when an element shares its valence electron with another element. This bond is formed between two non metals.
An ionic bond is formed when an element completely transfers its valence electron to another element. The element which donates the electron is known as electropositive element and the element which accepts the electrons is known as electronegative element. This bond is formed between a metal and an non-metal.
Chlorine and potassium atoms form ionic bonds: Ionic bond is formed when there is complete transfer of electron from a highly electropositive metal to a highly electronegative non metal. Electronegativity difference = electronegativity of chlorine - electronegativity of potassium = 3-0.8 = 2.2
Carbon atoms form non-polar covalent bonds with nitrogen atoms : Non-polar covalent bond is defined as the bond which is formed when there is no difference of electronegativities between the atoms. Electronegativity difference = electronegativity of nitrogen - electronegativity of carbon= 3.0-2.5 = 0.5
Oxygen forms polar covalent bonds with phosphorus: A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms. Electronegativity difference = electronegativity of oxygen - electronegativity of phosphorous = 3.5- 2.19 = 1.31
Answer:
c and d are correct
Explanation:
In A, false because in Valence Electrons, the more the valences, the more stable an atom is.
In B, false because atoms cannot readily gain or lose valence electrons as the number of valence electrons is determined by the column they are in.
In C, true because the more the valence electrons, the more the stability of an atom.
In D, true as electron placing is important and the reactivity of an atom is important.
So C and D are true!