Answer:
The final pressure is approximately 0.78 atm
Explanation:
The original temperature of the gas, T₁ = 263.0 K
The final temperature of the gas, T₂ = 298.0 K
The original volume of the gas, V₁ = 24.0 liters
The final volume of the gas, V₂ = 35.0 liters
The original pressure of the gas, P₁ = 1.00 atm
Let P₂ represent the final pressure, we get;



∴ The final pressure P₂ ≈ 0.78 atm.
Mole is mass (g) / Molar mass (mole/gram)
So to find mass in gram multiply the no.mole by Molar mass
The reaction produces 2.93 g H₂.
M_r: 133.34 2.016
2Al + 6HCl → 2AlCl₃ + 3H₂
<em>Moles of AlCl₃</em> = 129 g AlCl₃ × (1 mol AlCl₃/133.34 g AlCl₃) = 0.9675 mol AlCl₃
<em>Moles of H₂</em> = 0.9675 mol AlCl₃ × (3 mol H₂/2 mol AlCl₃) = 1.451 mol H₂
<em>Mass of H₂</em> = 1.451 mol H₂ × (2.016 g H₂/1 mol H₂) = 2.93 g H₂
In order for carbon to be stable and have 8 electrons, it must make 4 total covalent bonds.
In prefer for oxygen to be stable and have 8 electrons, it must make 2 covalent bonds.
So, we can deduce that CO2 looks like this:
O=C=O
This molecule has two double bonds.
Pssst...Can I get a brainliest?
Answer:
The answer is the letter A.
Explanation:
It is letter A because of Chlorine needs an electron to have a full shell. So, it will receive a negative one because it is gaining an electron. Potassium lost an electron because the element has to share the electron with Chlorine to balance its properties.