Answer:
20 J
Explanation:
Given:
Weight of the book is, 
Height or displacement of the book is, 
The work done on the book to raise it to a height of 2 m on a shelf is against gravity. The gravitational force acting on the book is equal to its weight. Now, in order to raise it, an equal amount of force must be applied in the opposite direction.
So, the force applied by me should be equal to weight of the body and in the upward direction. The displacement is also in the upward direction.
Now, work done by the applied force is equal to the product of force applied and displacement of book in the direction of the applied force.
Therefore, work done is given as:

Therefore, the work done to raise a book to a height 2 m from the floor is 20 J.
Force on a moving charge is given by formula

here we know that this force will be maximum when velocity is perpendicular to magnetic field

here we know that



now we have


Yes I'm pretty sure you can
Consider two variables said to be "inversely proportional" to each other. If all other variables are held constant, the magnitude or absolute value of one inversely proportional variable decreases if the other variable increases, while their product (the constant of proportionality k) is always the same.