The period of the pendulum is 8.2 s
Explanation:
The period of a simple pendulum is given by the equation:

where
L is the length of the pendulum
g is the acceleration of gravity
T is the period
We notice that the period of a pendulum does not depend at all on its mass, but only on its length.
For the pendulum in this problem, we have
L = 16.8 m
and
(acceleration of gravity)
Therefore the period of this pendulum is

#LearnWithBrainly
Answer:
Her speed is 1.1 m/s, and her velocity is 0 m/s
Explanation:
Speed = Distance covered/Time
Given
Distance = 400m
Time = 6minutes = 6*60 = 360 secs
Substitute the given parameter into the formula;
Speed = 400/360
Speed = 1.1m/s
Since the track is a circular track, the displacement will be zero. She is only moving in a circular path (no direction)
Velocity = Displacement/Time
Velocity = 0/3600
Velocity = 0m/s
Hence her speed is 1.1 m/s, and her velocity is 0 m/s
Answer:
v = 19.6 m/s.
Explanation:
Given that,
The radius of the circle, r = 5 m
The time period of the ball, T = 1.6s
We need to find the ball's tangential velocity.
The formula for the tangential velocity is given by :

Putting all the values in the above formula

So, the tangential velocity of the ball is 19.6 m/s. Hence, the correct option is (c).
<h2>Answer with Explanation </h2>
Dalton’s theory can be classified by the following hypotheses:
1) All material was formed of particles, unbreakable and strong construction segments.
2) All particles of a given component are indistinguishable in volume and characteristics
3) Compounds are determined by a mixture of two or more distinct kinds of atoms.
4) Chemical responses appeared in the rearrangement of the reacting atoms.
This theory was to explain all matter in terms of atoms and their characteristics, the law of conservation of volume and the law of constant composition.

A system that can be affected by the outside environment, by an exchange of matter or energy is an open physical system .