Answer:
Explanation:
If the initial velocity is U
Then the horizontal component of the velocity is
Ux= Ucosθ
Then the range for a projectile is give as
R=Ux.t
Where t is the time of flight
The time of flight is given as
t=2USinθ/g
Therefore,
R=Ux.t
R=UCosθ.2USinθ/g
R=U^2×2SinθCosθ/g
Then, from trigonometric ratio
2SinθCosθ= Sin2θ
R=U^2Sin2θ/g
Given that θ=32° and g=9.81m/s^2
Then
R=U^2Sin2×32/9.81
R=U^2Sin64/9.81
R=0.0916U^2
Then, range is given by R=0.0916U^2
A=0.0916U^2.
T
The box is at a distance A from the point of projection. Then the range R=A
R=0.0916U^2
A=0.0916U^2
Then,
U^2=A/0.0916
U^2=10.915A
Then the initial velocity should be
U=√10.915A
U=3.3√A
Refraction is the change in direction of a wave, caused by the change in the wave's speed. Examples of waves include sound waves and light waves. Refraction is seen most often when a wave passes from one transparent medium to another transparent medium. Different types of medium include air and water. When a wave passes from one transparent medium to another transparent medium, the wave will change its speed and its direction. For example, when a light wave travels through air and then passes into water, the wave will slow and change direction.
Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.
<h3><u>
Explanation:</u></h3>
The range in which the light exists is described as the electromagnetic spectrum. The light waves, radio waves, gamma rays,etc that exist in the world is not visible to human eyes. A kind of wave that modifies magnetic and electric fields is light. Spectroscopy makes use of all the frequencies and the wavelengths of the electromagnetic radiation.
The part of the electromagnetic spectrum that can be seen by the human eyes is the visible spectrum. The light waves with the wavelengths of 380 to 740 nm can be sen by the human eyes. Light at the red end of the visible portion has the least energy, lowest frequency, same speed, and longer wavelength compared to the violet end.
The density of the material would be
25/6 grams per cm^3.
to obtain the result above this is what we do:
density is calculated as: (the mass of the given material or object) / volume of the material
which leads us to 50grams /12cm^3