Answer:
The size of the force that pushes the wall is 12,250 N.
Explanation:
Given;
mass of the wrecking ball, m = 1500 kg
speed of the wrecking ball, v = 3.5 m/s
distance the ball moved the wall, d = 75 cm = 0.75 m
Apply the principle of work-energy theorem;
Kinetic energy of the wrecking ball = work done by the ball on the wall
¹/₂mv² = F x d
where;
F is the size of the force that pushes the wall
¹/₂mv² = F x d
¹/₂ x 1500 x 3.5² = F x 0.75
9187.5 = 0.75F
F = 9187.5 / 0.75
F = 12,250 N
Therefore, the size of the force that pushes the wall is 12,250 N.
Answer:
if the object is not in motion
Explanation:
Its C. 66 cal , that's your answer to your question.
Answer:
if we double the distance the energy stored will be doubled also
Explanation:
The energy stored in a capacitor is given as
Energy stored =1/2(cv²)
Or
= 1/2(Qv)
Where c = capacitance
Q= charge
But the electric field is expressed as
E= v/d
where v= voltage
d= distance
v=Ed
Substituting into any equation above say
Energy stored =1/2(Qv)
Substituting v=Ev
Energy stored =1/2(QEd)
From the equation above it shows that if we double the distance The energy stored will be doubled also