Distance= Time×Speed
= 1800×1.5
= 2700 m
I am not sure it's right. the question itself is confusing.
Answer:
Density of liquid = 4730 kg/m³
Atmospheric pressure on planet X = 8401.7 N/m²
Explanation:
Pressure, P = ρgh where ρ = density of liquid, g =9.8 m/s² and h = height of column at earth's surface = 2185 mm. Since P = atmospheric pressure, for mercury, P = ρ₁gh₁ where ρ₁ = 13.6 g/cm³ and h₁ = 760 mm
So, ρgh = ρ₁gh₁
ρ = ρ₁h₁/h = 13.6 g/cm³ × 760/2185 = 4.73 g/cm³ = 4730 kg/m³
The atmospheric pressure on planet X
P = ρg₁h₃ g₁ = g/4 and h₃ = 725 mm = 0.725 m
on planet X
P = ρg₁h₃ = (4730 kg/m³ × 9.8 m/s² × 0.725 m)/4 = 8401.7 N/m²
Answer:
Pressure, 
Explanation:
It is given that,
Combined mass of the man and the chair, m = 95 kg
Radius of the leg of chair, r = 0.5 cm = 0.005 m
A large man sits on a four-legged chair with his feet off the floor. The force acting per unit area is called the pressure exerted.


Area of 4 legs, A = 4 A



So, the pressure each leg exert on the floor is
. Hence, this is the required solution.
Answer:
1.when it is closest to the sun
2.when it is midway between its farthest
Explanation:
According to the law of Kepler's
T ² ∝ r³
T=Time period
r=semi major axis
We also know that time period T given as

v=Speed







So we can say that ,when r is more then the speed will be minimum and when r is low then speed will be maximum.
Answer:
Time= 1/frequency
=1/100
=0.01
Explanation: