Answer:
V = 3.17 m/s
Explanation:
Given
Mass of the professor m = 85.0 kg
Angle of the ramp θ = 30.0°
Length travelled L = 2.50 m
Force applied F = 600 N
Initial Speed u = 2.00 m/s
Solution
Work = Change in kinetic energy

The name and strength of the force holding the block up is 50 N upward - Normal force.
The given parameters:
- <em>Mass of the block, m = 5 kg</em>
The weight of the block acting downwards due to gravity is calculated as follows;
W = mg
where;
- <em>g is acceleration due to gravity = 10 m/s²</em>
W = 5 x 10
W = 50 N <em>(</em><em>downwards</em><em>)</em>
Since the block is at rest, an a force equal to the weight of the block must be acting upwards. This force is known as normal reaction.
Fₙ = 50 N <em>(</em><em>upwards</em><em>)</em>
Thus, the name and strength of the force holding the block up is 50 N upward - Normal force.
Learn more about Normal force here: brainly.com/question/14486416
Answer:
Option 3
Explanation:
O Option C is NEGATIVELY CHARGED, meaning it has GAINED ELECTRONS resulting in a GREATER number of ELECTRONS than PROTONS.
The image distance can be determined using the mirror equation: 1/f = 1/d_o + 1/d_i, where, f is the focal length, d_o is the object distance, and d_i is the image distance. Given that f = 28.2 and d_o = 33.2 cm, the value of d_i is calculated to be 187.248 cm. On the other hand, the image height is obtained using the magnification equation wherein, h_i/h_o = -d_i/d_o, where h_i is the image height and h_o is the object height. Using the given values, h_i is equal to -26.79 cm. Note that the negative sign indicates that the image is inverted.
Kinetic energy is the energy for a catapult.