Answer:
22.15 N/m
Explanation:
As we know potential energy = m*g*h
Potential energy of spring = (1/2)kx^2
m*g*h = (1/2)kx^2
Substituting the given values, we get -
(400)*(9.8)*(10) = (0.5)*(k)*(2.0^2)
k = 39200/2.645
k = 19600 N/m
For safety reasons, this spring constant is increased by 13 % So the new spring constant is
k = 19600 * 1.13 = 22148 N/m = 22.15 N/m
<span>it would bond to the phosphate
</span>
Answer:
True
Explanation:
If it weren't from a 90 degree angle then the circle would be a bit more oval shaped
Answer:
0.125 volts
Explanation:
The induced emf can be sufficient to stimulate neuronal activity.
One such device generates a magnetic field within the brain that rises from zero to 1.5 T in 120 ms.
We need to find the induced emf within a circle of tissue of radius 1.6 mm and that is perpendicular to the direction of the field. The formula for the induced emf is given by :

Where
is magnetic flux
So,

So, the induced emf is equal to 0.125 volts.
Answer:
"1155 N" is the appropriate solution.
Explanation:
Given:
Acceleration,

Forces resisting motion,

Mass,

By using Newton's second law, we get
⇒ 
Or,
⇒ 
By putting the values, we get
⇒ 
⇒ 
⇒ 