1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
15

As a pendulum swings back and forth __________.

Physics
1 answer:
Evgesh-ka [11]3 years ago
4 0

Answer:

E. All of the above.

Explanation:

These are the equations for potential (PE) and kinetic energy (KE):

PE = m · g · h

Where:

m = mass of the object.

g = acceleration due to gravity.

h = height.

KE = 1/2 · m · v²

Where:

m = mass.

v = speed.

At the end points of its swings, the pendulum is at its maximum height and its velocity is zero (for an instant). Then all the energy at these points is potential (answer B).

As the pendulum swings back from the end point it starts to lose height and acquires kinetic energy until it reaches the lowest part of the of its swing. At this point, all the potential energy was transformed into kinetic energy. The potential energy will be zero (because the height is zero) and due to energy conservation, the energy that once was potential energy has to be transformed into some kind of energy, in this case, into kinetic energy (we assume there is no air resistance, in which case some energy would be transformed into thermal energy as well, i.e., heat). (answer A and D).

After the lowest point, the pendulum acquires height (potential energy increases) and, due to the acceleration of gravity, it starts to lose velocity (kinetic energy decreases). Due to conservation of energy, the increase in potential energy must be equal to the decrease in kinetic energy. The kinetic energy is transformed into potential energy (answer C).

Then, the answer is E. All answers are correct.

You might be interested in
Which best describes a difference between electric current and static electricity?
NeTakaya

Perhaps one of the most useful yet taken-for-granted accomplishments of the recent centuries is the development of electric circuits. The flow of charge through wires allows us to cook our food, light our homes, air-condition our work and living space, entertain us with movies and music and even allows us to drive to work or school safely. In this unit of The Physics Classroom, we will explore the reasons for why charge flows through wires of electric circuits and the variables that affect the rate at which it flows. The means by which moving charge delivers electrical energy to appliances in order to operate them will be discussed in detail.

One of the fundamental principles that must be understood in order to grasp electric circuits pertains to the concept of how an electric field can influence charge within a circuit as it moves from one location to another. The concept of electric field was first introduced in the unit on Static Electricity. In that unit, electric force was described as a non-contact force. A charged balloon can have an attractive effect upon an oppositely charged balloon even when they are not in contact. The electric force acts over the distance separating the two objects. Electric force is an action-at-a-distance force.

Action-at-a-distance forces are sometimes referred to as field forces. The concept of a field force is utilized by scientists to explain this rather unusual force phenomenon that occurs in the absence of physical contact. The space surrounding a charged object is affected by the presence of the charge; an electric field is established in that space. A charged object creates an electric field - an alteration of the space or field in the region that surrounds it. Other charges in that field would feel the unusual alteration of the space. Whether a charged object enters that space or not, the electric field exists. Space is altered by the presence of a charged object; other objects in that space experience the strange and mysterious qualities of the space. As another charged object enters the space and moves deeper and deeper into the 

6 0
3 years ago
You need a 450 micrograms sample of gold,but you only have a mass balance that measures in decigrams. Convert the amount of gold
stealth61 [152]
It is the 459 of it comparing
7 0
2 years ago
Vector A has a magnitude of 63 units and points west, while vector B has the same magnitude and points due south. Find the magni
ozzi

Given :

Vector A has a magnitude of 63 units and points west, while vector B has the same magnitude and points due south.

To Find :

The magnitude and direction of

a) A + B .

b) A - B.

Solution :

Let , direction in north is given by +j and east is given by +i .

So , A=-63i and B=63j

Now , A + B is given by :

A+B=-63i+63j

| A+B | = 63\sqrt{2}

Direction of A+B is 45° north of west .

Also , for A-B :

A-B=-63i-63j

|A-B|=63\sqrt{2}

Direction of A-B is 45° south of west .

( When two vector of same magnitude which are perpendicular to each other are added or subtracted the resultant is always 45° from each of them)

Hence , this is the required solution .

4 0
2 years ago
An experiment is set up to test the angular resolution of an optical device when red light (wavelength ????r ) shines on an aper
Neko [114]

Explanation:

As per Rayleigh criterion, the angular resolution is given as follows:

\theta=\frac{1.22 \lambda}{D}

From this expression larger the size of aperture, smaller will be the value of angular resolution and hence, better will be the device i.e. precision for distinguishing two points at very high angular difference is higher.

4 0
3 years ago
A freight train rolls along a track with considerable momentum. If it were to roll at the same speed but had twice as much mass,
fomenos

Answer:

The momentum would be doubled

Explanation:

The magnitude of the momentum of the freight train is given by:

p=mv

where

m is the mass of the train

v is its speed

In this problem, we have that the speed of the train is unchanged, while the mass of the train is doubled:

m'=2m

therefore, the new momentum is

p'=m'v=(2m)v=2(mv)=2p

so, the momentum has also doubled.

7 0
2 years ago
Other questions:
  • Magma is classified as basaltic and andesitic or rhyolitic based on my factor
    7·1 answer
  • Which medium is the greatest threat to the printed newspaper?
    7·1 answer
  • What are the movements of boiling water? I'm looking for if they speed up, like that sort of thing. Not how, not why, just what
    5·1 answer
  • A conductor carrying 14.7 amps of current is directed along the positive x-axis and perpendicular to a uniform magnetic field. A
    13·1 answer
  • Which measurement is a potential difference?
    12·1 answer
  • 11) A ball is dropped from the roof to the floor. Its' atoms start vibrating faster.in terms
    15·1 answer
  • What should Isla write in the areas marked A, B, and C?
    15·2 answers
  • Question 8 of 25
    7·1 answer
  • If Goku sprints and tackles a large metal crate doing 18002 J of work over the course of
    11·1 answer
  • Question 4 (1 point)
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!