<u>Given:</u>
Mass of pure iron (Fe) = 3.4 g
<u>To determine:</u>
Mass of HBr needed to dissolve the above iron
<u>Explanation:</u>
Reaction between HBr and Fe is
Fe + 2HBr → FeBr₂ + H₂
Based on the reaction stoichiometry-
1 mole of Fe reacts with 2 moles of HBr
# moles of Fe = mass of Fe/atomic mass of Fe = 3.4/56 g.mol⁻¹ = 0.0607 moles
Therefore # moles of HBr = 2*0.0607 = 0.1214 moles
Molar mass of HBr = 81 g/mole
Mass of HBr = 0.1214 moles * 81 g/mole = 9.83 g
Ans: Mass of HBR required is 9.83 g
Answer:
SN2
Explanation:
The first step of ether cleavage is the protonation of the ether since ROH is a better leaving group than RO-.
The second step of the reaction may proceed by either SN1 or SN2 mechanism depending on the structure of the ether. Methyl and primary ethers react with HI by SN2 mechanism while tertiary ethers react with HI by SN1 mechanism. Secondary ethers react with HI by a mixture of both mechanisms.
Dipentyl ether is a primary ether hence when treated with HI, the reaction with HI proceeds by SN2 mechanism as explained above.
Explanation:
ooohhhh it's free points,,,thank you mwahhh hahahahahaha jokeee
sorry I don't have any ideas
Answer:
5SiO2 + 2CaC2 ➡ 5Si + 2CaO + 4CO2
Explanation:
This question involves balancing the above equation. An equation is said to be BALANCED when all the atoms of each element in the reactant side equates that in the product side.
According to this question, a chemical reaction is given as follows: SiO2 + CaC2 = Si + CaO + CO2. Based on observation, the atoms of elements are Silicon, oxygen, calcium and carbon are not the same on the reactants and products side. Based on this, the balanced equation is:
5SiO2 + 2CaC2 ➡ 5Si + 2CaO + 4CO2