Answer:
-30.7 kj/mol
Explanation:
The standard free energy for the given reaction that is the hydrolysis of ATP is calculated using the formula: ∆Go ’= -RTln K’eq
where,
R = -8.315 J / mo
T = 298 K
For reaction,
1. K′eq1=270,
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 270
= - 8.315 x 298 x 5.59
= - 13,851.293 J / mo
= - 13.85 kj/mol
2. K′eq2=890
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 890
= - 8.315 x 298 x 6.79
= - 16.82 kj/mol
therefore, total standard free energy
= - 13.85 + (-16.82)
= -30.7 kj/mol
Thus, -30.7 kj/mol is the correct answer.
Answer:
No
Explanation:
Protons determine the type of element it is which the number of protons.
Isotopes are determined by the same elements with the same amount of protons, but different number of neutrons.
Transverse waves have motion perpendicular to velocity, while longitudinal waves have motion parallel to velocity.
Explanation:
The correct option of all is that transverse waves have motion perpendicular to velocity while longitudinal waves have motion parallel to velocity.
A wave is a disturbance that transmits energy from one point to another. There several types of waves like sound, electromagnetic , ocean waves etc.
- Waves can be classified as either longitudinal or transverse waves based on the direction through which they are propagated.
- Longitudinal waves are waves propagated parallel to the source of velocity.
- An example is sound waves and seismic p-waves.
- They have series of rarefaction and compression along their path.
- Transverse waves are propagated perpendicular to their source.
- An example is electromagnetic waves in which electrical and magnetic fields vibrates perpendicularly.
learn more:
Electromagnetic radiation brainly.com/question/6818046
#learnwithBrainly
Answer:
The pH of the solution will be 7.53.
Explanation:
Dissociation constant of KClO=
Concentration of acid in 1 l= 0.30 M
Then in 200 ml = 
The concentration of acid, HClO=[acid]= 0.006 M
Concentration of salt in 1 L = 0.20 M
Then in 300 ml = 
The concentration of acid, KClO=[salt]= 0.006 M
The pH of the solution will be given by formula :
![pH=pK_{a}^o+\log\frac{[salt]}{[acid]}](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%5Eo%2B%5Clog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D)
![pH=-\log[2.8\times 10^{-8}]+\frac{[0.06 M]}{[0.06 M]}](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B2.8%5Ctimes%2010%5E%7B-8%7D%5D%2B%5Cfrac%7B%5B0.06%20M%5D%7D%7B%5B0.06%20M%5D%7D)
The pH of the solution will be 7.53.
<span><span>LiF, LiCl, LiBr, LiI, LiAtNaF, NaCl, NaBr, NaI, NaAtKF, KCl, KBr, KI, KAt</span><span>RbF, RbCl, RbBr, RbI, RbAt CsF, CsCl, CsBr, CsI, CsAt FrF, FrCl, FrBr, FrI, FrAt<span>
</span></span></span>