We can solve the problem by using Newton's second law of motion:

(1)
where
the term on the left is the resultant of the forces acting on an object
m is the mass of the object
a is the acceleration of the object
The mass of the ball in this problem is m=1 kg. Two forces are applied, in opposite directions, of 20 N and 12 N, therefore the resultant of the forces is

Therefore, we can rearrange eq.(1) and use these data to find the acceleration of the ball:
Answer: Negatively charged particles are repelled by other negatively charged particles
Explanation:
A uniform thin solid door has height 2.20 m, width .870 m, and mass 23.0 kg. Find its moment of inertia for rotation on its hinges. Is any piece of data unnecessary? So far, I don't understand how to calculate moments of inertia for things like this at all. I can do a system of particles, but when it comes to any ridgid objects, such as this door or rods or cylinders, I don't get it. So basically I have no idea where to even start with this.
so A
Answer:
Moment of inertia of the solid sphere:
I
s
=
2
5
M
R
2
.
.
.
.
.
.
.
.
.
.
.
(
1
)
Is=25MR2...........(1)
Here, the mass of the sphere is
M
M