BaCl₂(aq) + Na₂SO₄(aq) = BaSO₄(s) + 2NaCl(aq)
Ba²⁺(aq) + 2Cl⁻(aq) + 2Na⁺(aq) + SO₄²⁻(aq) = BaSO₄(s) + 2Na⁺(aq) + 2Cl⁻(aq)
Ba²⁺(aq) + SO₄²⁻(aq)= BaSO₄(s)
<span>Many life forms consist of a single cell. As well as simple bacteria, there are more complex organisms, known as protoctists. Unlike bacteria, they have complex internal structures, such as nuclei containing organized strands of genetic material called chromosomes. Most are single-celled, but some form colonies, with each cell usually remaining self-sufficient.</span>
Answer:


Explanation:
Hello!
In this case, since the molecular formula of glycine is C₂H₅NO₂, we realize that the molar mass is 75.07 g/mol; thus, the moles in 130.0 g of glycine are:

Furthermore, we can notice 75.07 grams of glycine contains 14.01 grams of nitrogen; thus, the percent nitrogen turns out:

Best regards!
The solution would be like
this for this specific problem:
<span><span>
E</span>=</span><span>mc</span>ΔT<span> <span>
= (</span>15<span> g</span><span>)(</span>1.91<span> <span>J<span><span>g∘</span>C</span></span>)(</span>25<span><span> ∘</span>C</span>−15<span><span> ∘</span>C</span><span>)
</span></span>= 28.65 * 10
= 286.5
<span>
I hope this helps and if you have any further questions, please don’t hesitate
to ask again. </span>
Increasing the temperature of a gas sample means that heat energy is been supplied to the System. When energy is been supplied heat energy is transformed into kinetic energy of the gas molecules.
Therefore kelvin temperature increases means more energy given to the system therefore average kinetic energy of molecules increase.
When the kinetic energy of molecules increase they move about more and take up more space. Hence volume too increases.
Therefore the correct answer is
4) average kinetic energy of molecules increase and volume of the gas sample increases