Answer:
34g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
H2S + 2AgNO3 —> 2HNO3 + Ag2S
Next, we shall determine the number of mole of H2S required to react with 2 moles of AgNO3.
This is illustrated below:
From the balanced equation above,
We can see that 1 mole of H2S is required to react completely with 2 moles of AgNO3.
Finally, we shall convert 1 mole of H2S to grams. This is shown below:
Number of mole H2S = 1 mole
Molar mass of H2S = (2x1) + 32 = 34g/mol
Mass = number of mole x molar Mass
Mass of H2S = 1 x 34
Mass of H2S = 34g
Therefore, 34g of H2S is needed to react with 2 moles of AgNO3.
1,3-pentadiene has two double bonds which are conjugated, which undergo electrophilic addition reaction on reacting with
.
The structure of 1,3-pentadiene is shown in the image.
When strong acid such as
reacts with 1,3-pentadiene, the electrophilic addition reaction can occur either on double bond at 1,2-position or at 3,4-position. The reaction that occurs is shown in the image.
Answer:
Magnesium loses two electrons.
Explanation:
- As clear from the reaction Mg converted from <em>Mg(s) to Mg²⁺</em>, so Mg converted from the oxidation state (0) to (2+).
<em>∴ Mg losses two electrons.</em>
- Cl⁻ remains as it is, so it is considered as a catalyst and neither loss nor gain any electrons.
<em>So, the correct choice is Magnesium loses two electrons.</em>