Answer:
Explanation:
Using the pythagoras theorem, the displacement is expressed as;
d² = x²+y²
y = 36m (north)
x = 20m east
Substitute;
d² = 36²+20²
d² = 1296+400
d² = 1696
d = √1696
d = 41.18m
For the direction;
theta = tan^-1(y/x)
theta = tan^-1(36/20)
theta = tan^-1(1.8)
theta = 60.95°
Hence the magnitude is 41.18m and the direction is 60.95°
Answer:
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
Explanation:
Given data
Φ = 5.32 eV
to find out
the longest wavelength
solution
we know that
hf = k(maximum) +Ф ...............1
here we consider k(maximum ) will be zero because photon wavelength max when low photon energy
so hf = 0
and hc/ λ = +Ф
so λ = hc/Ф ................2
now put value hc = 1240 ev nm and Φ = 5.32 eV
so hc = 1240 / 5.32
hc = 233 nm
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
Answer: Resting Membrane Potential
Explanation:
The <u>resting membrane potential</u> refers to the difference in voltage between the inside and outside of the cell membrane when the cell is at physiological rest. It should be noted that <u>the cell membrane is a selective semipermeable barrier, which only allows the transit through it of certain molecules and prevents the transit of others.
</u>
This selectivity causes an uneven distribution of charged particles (ions), as the membrane only accepts some types of ions.
Now, in the case of neurons, which are electrically excitable nerve cells; the transport of electrical signals is due to these changes in the permeability and asymmetric distribution of ions (mainly sodium and potassium) when the neuron is not excited (at rest).
Answer:
μ = tanθ = tan30 = 0.58
Explanation:
μ = force parallel/force perpendicular = mgsinθ/mgcosθ = tanθ
Answer:
t = 1,28 s
Explanation: This problem is a projectile motion problem.
V₀ₓ = V₀ * cosθ
Vₓ = constant all the way
Vₓ = V₀ₓ
tanθ = Vyi/Vxi that means in any point of the trajectory
tanθ = 6 / 60 ( just before touching the ground )
tanθ = 0,1 then arctan 0,1 ≈ 6⁰
sin 6⁰ = 0,1045
cos 6⁰ = 0,9945
V₀ₓ = V₀ * cosθ ⇒ V₀ = V₀ₓ / cosθ ⇒ V₀ = 60 / 0,9945
V₀ = 60,33 m/s
V₀y = V₀ * sin θ ⇒ V₀y = 60,33 * 0,1045 ⇒ V₀y = 6,30 m/s
Vy = V₀y - g * t
At maximum y Vy = 0 ( the middle of the trajectory)
g*tm = V₀y ⇒ tm= V₀y / g
tm = 6,30 / 9,8
tm = 0,64 s ( time to reach maximum y )
Then the time of fligh is twice 0,64 s
t = 0,64 * 2
t = 1,28 s