Answer: A 100-lb child stands on a scale while riding in an elevator. Then, the scale reading approaches to 100lb, while the elevator slows to stop at the lowest floor
Explanation: To find the correct answer, we need to know more about the apparent weight of a body in a lift.
<h3>What is the apparent weight of a body in a lift?</h3>
- Consider a body of mass m kept on a weighing machine in a lift.
- The readings on the machine is the force exerted by the body on the machine(action), which is equal to the force exerted by the machine on the body(reaction).
- The reaction we get as the weight recorded by the machine, and it is called the apparent weight.
<h3>How to solve the question?</h3>
- Here we have given with the actual weight of the body as 100lbs.
- This 100lb child is standing on the scale or the weighing machine, when it is riding .
- During this condition, the acceleration of the lift is towards downward, and thus, a force of ma .
- There is also<em> mg </em>downwards and a normal reaction in the upward direction.
- when we equate both the upward force and downward force, we get,
i.e. during riding the scale reads a weight less than that of actual weight.
- When the lift goes slow and stops the lowest floor, then the acceleration will be approaches to zero.
Thus, from the above explanation, it is clear that ,when the elevator moves to the lowest floor slowly and stops, then the apparent weight will become the actual weight.
Learn more about the apparent weight of the body in a lift here:
brainly.com/question/28045397
#SPJ4
Answer:
There will be 1800 W power consumption in heater
Explanation:
We have given current flowing in the heater I = 15 A
Voltage on which heater is operating V = 120 volt
We have to find the power consumption in the heater
We know that power consumption is given by P = VI
So power consumption in heater = 120 × 15 = 1800 W
So there will be 1800 W power consumption in heater
Answer:
43km/h to m/s = 11.9444
Explanation:
1 km = 1000 m; 1 hr = 3600 sec. To convert km/hr into m/sec, multiply the number by 5 and then divide it by 18.
1935.5 N is the "net force" acting on a car.
<u>Explanation</u>:
Given that,
Mass of the car is 790 kg.
Velocity of the car is 7 m/s. (v)
It turned around with 20 m. (r)
We know that, Net force = m × a




Now, Net force = m × a
Net force = 790 × 2.45
Net force = 1935.5 N
Answer:
1 greater distances fallen in successive seconds
Explanation:
When a body falls freely it is subjected to the action of the force of gravity, which gives an acceleration of 9.8 m / s2, consequently, we are in an accelerated movement
If we use the kinematic formula we can find the position of the body
Y = Vo t + ½ to t2
Where the initial velocity is zero or constant and the acceleration is the acceleration of gravity
Y = - ½ g t2 = - ½ 9.8 t2 = -4.9 t2
Let's look for the position for successive times
t (s) Y (m)
1 -4.9
2 -19.6
3 -43.2
The sign indicates that the positive sense is up
It can be clearly seen that the distance is greatly increased every second that passes