Answer:
, it flows through your community's sanitary sewer system to a wastewater treatment facility.
Answer:
Friction force on the bullet is 58.7 N opposite to its velocity
Explanation:
As we know that initial speed of the bullet is 55 m/s
after travelling into the sand bag by distance d = 1.34 m it comes to rest
so final speed

now we can use kinematics top find the acceleration of the bullet

so we have


now by Newton's II law we know that

so we have


Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m
Answer:
Force = 35 N
Explanation:
From Newton's third law of motion, the boy must apply a force greater than the weight of the sled to lift it.
weight of sled = mg
where m is its mass and g the force of gravity on it.
weight of sled = 50 N
Force applied by the boy on the sled = 15 N
Since the force applied on the sled by the boy is lesser than the weight of the sled, then;
Force that the sled exerts on the student = 50 - 15
= 35 N
The force exerted by the sled on the student is 35 N.