Answer:
a= g = - 9.81 m/s2.
The following equations will be helpful:
a = (vf - vo)/t d = vot + 1/2 at2 vf2 = vo2 + 2ad
When you substitute the specific acceleration due to gravity (g), the equations are as follows:
g = (vf - vo)/t d = vot + 1/2 gt2 vf2 = vo2 + 2gd
If the object is dropped from rest, the initial velocity ("vi") is zero. This further simplifies the equations to these:
g = vf /t d = 1/2 gt2 vf2 = 2gd
The sign convention that we will use for direction is this: "down" is the negative direction. If you are given a velocity such as -5.0 m/s, we will assume that the direction of the velocity vector is down. Also if you are told that an object falls with a velocity of 5.0 m/s, you would substitute -5.0 m/s in your equations. The sign convention would also apply to the acceleration due to gravity as shown above. The direction of the acceleration vector is down (-9.81 m/s2) because the gravitational force causing the acceleration is directed downward.
hope this info helps you out!
True Requires the development of theories that can be tested by systematic research.
Answer:
Conductors have magnetic fields; insulators do not have magnetic fields. Conductors do not have magnetic fields; insulators do have magnetic fields. ... In a conductor, electric current cannot flow freely; in an insulator, it can flow freely.
Answer:
Friction 100 j
Explanation:
Friction causes the inequality between PE and KE
100 J