The alpha line in the Balmer series is the transition from n=3 to n=2 and with the wavelength of λ=656 nm = 6.56*10^-7 m. To get the frequency we need the formula: v=λ*f where v is the speed of light, λ is the wavelength and f is the frequency, or c=λ*f. c=3*10^8 m/s. To get the frequency: f=c/λ. Now we input the numbers: f=(3*10^8)/(6.56*10^-7)=4.57*10^14 Hz. So the frequency of the light from alpha line is f= 4.57*10^14 Hz.
Answer:
d. zero
Explanation:
Constant velocity means the acceleration is zero. In this case the velocity does not change,
hope this helps you
have a good day :)
Explanation:
We need to calculate the speed of light in each materials
(I). Gallium phosphide,
The index of refraction of Gallium phosphide is 3.50
Using formula of speed of light
....(I)
Where,
= index of refraction
c = speed of light
Put the value into the formula


(II) Carbon disulfide,
The index of refraction of Gallium phosphide is 1.63
Put the value in the equation (I)


(III). Benzene,
The index of refraction of Gallium phosphide is 1.50
Put the value in the equation (I)


Hence, This is the required solution.
Answer:
true
Explanation:
i believe that's the answer hope that helps
Answer:
The circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.
Explanation:
Since the magnetic field, B points in my direction and the current, I is moving in a clockwise direction, the current is always perpendicular to the magnetic field and will thus experience a constant force, F = BILsinФ where Ф is the angle between B and L.
Since the magnetic field is in my direction, it is perpendicular to the plane of the circular loop and thus perpendicular to L where L = length of circular loop. Thus Ф = 90° and F = BILsin90° = BIL
According to Fleming's left-hand rule, the fore finger representing the magnetic field, the middle finger represent in the current and the thumb representing the direction of force on the circular loop.
At each point on the circular loop, the force is always directed towards the center of the loop and thus tends to compress it.
<u>So, the circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.</u>