Answer:
geez I have no clue sorry
Answer:
Salt domes storage has advantages in cost, security, environmental risk, and maintenance. Salt formations offer the lowest cost, most environmentally secure way to store crude oil for long periods of time. Stockpiling oil in artificially-created caverns deep within the rock-hard salt costs historically about $3.50 per barrel in capital costs. Storing oil in above ground tanks, by comparison, can cost $15 to $18 per barrel - or at least five times the expense. Also, because the salt caverns are 2,000-4,000 feet below the surface, geologic pressures will sea; any crack that develops in the salt formation, assuring that no crude oil leaks from the cavern. An added benefit is the natural temperature differential between the top of the caverns and the bottom - a distance of around 2,000 feet; the temperature differential keeps the crude oil continuously circulating in the caverns, giving the oil a consistent quality.
Delta T= T final - T initial
Tfinal= -101.1 °C
Tinitial= -0.5 °C
•Delta T = -101.1°C - (-0.5°C)
=100.6°C
Kelvin= °C + 273
= -100.6 + 273
= 172.4 Kelvin
Moles of potassium permanganate = 0.0008
<h3>Further explanation </h3>
Titration is a procedure for determining the concentration of a solution by reacting with another solution which is known to be concentrated (usually a standard solution). Determination of the endpoint/equivalence point of the reaction can use indicators according to the appropriate pH range
Reaction
5Na2C2O4(aq) + 2KMnO4(aq) + 8H2SO4(aq) ---> 2MnSO4(aq) + K2SO4(aq) + 5Na2SO4(aq) + 10CO2(g) + 8H2O(1)
The end point ⇒titrant and analyte moles equal
titrant : potassium permanganate-KMnO4
analyte : sodium oxalate - Na2C2O4
so moles of KMnO4 = moles of Na2C2O4
moles of Na2C2O4(mass = 0.2640 g, MW=134 g/mol) :
From equation, mol ratio Na2C2O4 : KMnO4 = 5 : 2, so mol KMnO4 :
Answer:
Fe²⁺(aq) + S²⁻(aq )⟶ FeS(s)
Step-by-step explanation:
Molecular Equation:
(NH₄)₂S(aq) + FeCl₂(aq) ⟶ 2NH₄Cl(aq) + FeS(s)
Ionic equation
:
2NH₄⁺(aq) + S²⁻(aq) + Fe²⁺(aq) + 2Cl⁻(aq) ⟶ 2NH₄⁺(aq) + 2Cl⁻(aq) + FeS(s)
Net ionic equation
:
Cancel all ions that appear on both sides of the reaction arrow (underlined).
<u>2NH₄⁺(aq)</u> + S²⁻(aq) + Fe²⁺(aq) + <u>2Cl⁻(aq)</u> ⟶ <u>2NH₄⁺(aq) </u>+ 2<u>Cl⁻(aq) </u>+ FeS(s)
Fe²⁺(aq) + S²⁻(aq )⟶ FeS(s)