Most likely the answer is B.
You need to observe the car at two different times.
-- The first time:
You write down the car's speed, and the direction it's pointing.
-- The second time:
You write down the car's speed and the direction it's pointing, again.
You take the data back to your lab to analyze it.
-- You compare the first and second speed. If they're different,
then the car had acceleration during the time between the two
observations.
-- You compare the first and second direction. If those are different,
even if the speeds are the same, then the car had acceleration during
the time between the two observations.
(Remember, "acceleration" doesn't mean "speeding up".
It means any change in speed or direction of motion.)
Answer:
She should explain that the Sun is made up of gaseous layers that surround an iron core.
Answer:
The electric potential is approximately 5.8 V
The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero
Explanation:
The two protons can be considered as point charges. Therefore, the electric potential is given by the point charge potential:
(1)
where
is the charge of the particle,
the electric permittivity of the vacuum (I assuming the two protons are in a vacuum) and
is the distance from the point charge to the point where the potential is being measured. Because the electric potential is an scalar, we can simply add the contribution of the two potentials in the midpoint between the protons. Thus:

Substituting the values
,
and
we obtain:

The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero.