Answer:
Vapour pressure of a liquid varies with temperature
Explanation:
The vapour pressure of any liquid is directly proportional to the temperature of the liquid. This implies that, as the temperature of the liquid increases, the vapour pressure increases likewise and vice versa.
Since the vapour pressure of liquid varies with the temperature of the liquid, it is essential to know the water temperature in the experiment to determine the vapour pressure of water.
The dissociation equation will be
NH4OH ---> NH4+ + OH-
Initial 0.006 0 0
Change -0.006 X 0.053 +0.006 X 0.053 -0.006 X 0.053
Equlibrium 0.006 -0.006 X 0.053 0.006 X 0.053 0.006 X 0.053
Ka = [NH4+] [ OH-] / [NH4OH] = (0.006 X 0.053)^2 / 0.006 -0.006 X 0.053
Ka = 1.78 X 10^-5
It will take 5.2 years to decay.
The half life of cobalt-60 is 5.2 years. The half life is the time taken for the mass of the substance to decrease by a half.
here, the amount of remaining substance is 50%,
so, 
n. log (0.5) = log (0.5)
n = 1
So it would take 1 half lives to decay this much, which is 1 x 5.2 which is 5.2 years.
what do you mean by radioactive decay ?
The process through which an unstable atomic nucleus loses energy via radiation is known as radioactive decay, also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration. A material that has unstable nuclei is considered as radioactive.
Learn more about decay here:-
brainly.com/question/13853996
#SPJ1
_________ is designed to protect you from injuries to your head, face, eyes, ears, hands, feet, respiratory tract, and body
the answer to this question, is B personal protective equipment
hope this helps :D
Answer:

Explanation:
Hello!
In this case, since we are considering an gas, which can be considered as idea, we can write the ideal gas equation in order to write it in terms of density rather than moles and volume:

Whereas MM is the molar mass of the gas. Now, since we can identify the initial and final states, we can cancel out R and MM since they remain the same:

It means we can compute the final density as shown below:

Now, we plug in to obtain:

Regards!