I believe the answer would be mass. Low mass stars and medium mass stars often become white dwarfs when they die while high mass stars explode in violent explosions called supernovas and usually leave behind a black hole or a neutron star.
(a) The minimum force F he must exert to get the block moving is 38.9 N.
(b) The acceleration of the block is 0.79 m/s².
<h3>
Minimum force to be applied </h3>
The minimum force F he must exert to get the block moving is calculated as follows;
Fcosθ = μ(s)Fₙ
Fcosθ = μ(s)mg
where;
- μ(s) is coefficient of static friction
- m is mass of the block
- g is acceleration due to gravity
F = [0.1(36)(9.8)] / [(cos(25)]
F = 38.9 N
<h3>Acceleration of the block</h3>
F(net) = 38.9 - (0.03 x 36 x 9.8) = 28.32
a = F(net)/m
a = 28.32/36
a = 0.79 m/s²
Thus, the minimum force F he must exert to get the block moving is 38.9 N.
The acceleration of the block is 0.79 m/s².
Learn more about minimum force here: brainly.com/question/14353320
#SPJ1
Answer:
Explanation:
I is the moment of inertia of the pulley, α is the angular acceleration of the pulley and T is the tension in the rope. Let a is the linear acceleration.
The relation between the linear acceleration and the angular acceleration is
a = R α .... (1)
According to the diagram,
T x R = I x α
T x R = I x a / R from equation (1)
T = I x a / R² .... (2)
mg - T = ma .... (3)
Substitute the value of T from equation (2) in equation (3)


T is the acceleration in the system
Substitute the value of a in equation (2)


This is the tension in the string.
Answer:
The awnser is d
Explanation:
i know cause i took the test