Mass of the block = 1.4 kg
Weight of the block = mg = 1.4 × 9.8 = 13.72 N
Normal force from the surface (N) = 13.72 N
Acceleration = 1.25 m/s^2
Let the coefficient of kinetic friction be μ
Friction force = μN
F(net) = ma
μmg = ma
μg = a
μ = 
μ = 
μ = 0.1275
Hence, the coefficient of kinetic friction is: μ = 0.1275
Answer:
The magnitude of F1 is

The magnitude of F2 is

And the direction of F2 is

Explanation:
<u>Net Force
</u>
Forces are represented as vectors since they have magnitude and direction. The diagram of forces is shown in the figure below.
The larger pull F1 is directed 21° west of north and is represented with the blue arrow. The other pull F2 is directed to an unspecified direction (red arrow). Since the resultant Ft (black arrow) is pointed North, the second force must be in the first quadrant. We must find out the magnitude and angle of this force.
Following the diagram, the sum of the vector components in the x-axis of F1 and F2 must be zero:

The sum of the vertical components of F1 and F2 must equal the total force Ft

Solving for
in the first equation






The magnitude of F1 is

The magnitude of F2 is

And the direction of F2 is

Answer:
Paying for employees seminars and workshops related to their careers
Explanation:
To motivate personal development among employees, several things can be done. Among them, giving employees chance to present their own solutions to problems, exposing the employees to several global challenges and how to handle them, paying for employees seminars and workshops related to their own careers for professional development among other things.
Answer:
change in mass = 2.41*10^{8}kg
Explanation:
The change in the mass can be computed by using the relation
(1)
That is, the energy liberated comes from the mass of the nuclear fuel. The energy generated in one year is

Hence, by replacing in the equation (1) you have (c=3*10^{8}m/s)

HOPE THIS HELPS!!
The coefficient of friction must be 0.196
Explanation:
For a car moving on a circular track, the frictional force provides the centripetal force needed to keep the car in circular motion. Therefore, we can write:
where the term on the left is the frictional force acting between the tires of the car and the road, while the term on the right is the centripetal force. The various terms are:
is the coefficient of friction between the tires and the road
m is the mass of the car
is the acceleration of gravity
v is the speed of the car
r is the radius of the curve
In this problem,
r = 750 m is the radius
is the speed
And solving for
, we find the coefficient of friction required to keep the car in circular motion:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly