<span>I am sure these answers are correct cause I've checked all of them. Here they are :
1) The thing which might h</span>appen to the rest of the water is that 61% of that water leaves the ground through evapotranspiration and <span>38% will flow into the Atlantic Ocean.
</span>
2) The four states which receive drinking water from Florida are : <span> South Carolina, Georgia, Alabama, Mississippi
3) The</span> reason why people in Florida wanted to get rid of the water in certain areas is abundance of wetlands. I think there is one more, if it is acceptable I suggest you using this - frequent flooding.<span>
4) </span><span> The negative result of the changes which people made to get rid of the water is the first sign of </span>drought.
5) The thing that has been done to try and improve those mistakes was creating a tool which looked like a dam to prevent dfficulties with <span>navigating the state.
Hope that helps.</span>
See the sketch attached.
<h3>Explanation</h3>
The Lewis structure of a molecule describes
- the number of bonds it has,
- the source of electrons in each bond, and
- the position of any lone pairs of electrons.
Atoms are most stable when they have eight or no electrons in their valence shell (or two, in case of hydrogen.)
- Each oxygen atom contains six valence electrons. It demands <em>two</em> extra electrons to be chemically stable.
- Each sulfur atom contains six valence electrons. It demands <em>two </em> extra electrons to be chemically stable.
- Each hydrogen atom demands <em>one</em> extra electron to be stable.
H₂O contains two hydrogen atoms and one oxygen atom. It would take an extra 2 + 2 × 1 = 4 electrons for all its three atoms are stable. Atoms in an H₂O would achieve that need by sharing electrons. It would form a total of 4 / 2 = 2 O-H bonds.
Each O-H bond contains one electron from oxygen and one from hydrogen. Hydrogen has no electron left. Oxygen has six electrons. Two of them have went to the two O-H bonds. The remaining four become 4 / 2 = 2 lone pairs. The lone pairs repel the O-H bonds. By convention, they are placed on top of the two H atoms.
Similarly, atoms in a SO₂ molecule demands an extra 2 × 2 + 2 = 6 electrons for its three atoms to become chemically stable. It would form 6 / 2 = 3 chemical bonds. Loops are unlikely in molecules without carbon. As a result, one of the two O atoms would form two bonds with the S atom while the other form only one.
Atoms are unstable with an odd number of valence electrons. The S atom in SO₂ would have become unstable if it contribute one electron to each of the three bond. It would end up with 3 × 2 + 3 = 9 valence electrons. One possible solution is that it contributes two electrons in one particular bond. One of the three bonds would be a coordinate covalent bond, with both electrons in that bond from the S atom. In some textbooks this type of bonds are also known as dative bonds.
Dots and crosses denotes the origin of electrons in a bond. Use the same symbol for electrons from the same atom. Electrons from the oxygen atoms O are shown in blue in the sketch. They don't have to be colored.
Answer:
They contain of atoms
Explanation:
That's because atomic weights or masses of each atom of each element are proportional to each other, the same number of atoms of each element will give masses that are also proportional to each other. If you start with 20 oxygen atoms, you will need 40 hydrogen atoms to make the water and you will get 20 molecules of water.
Answer: all I know it’s not -31.5 for ppl taking the k12 test
Explanation: I took the test
Hydrogen (H) was first, followed by helium (He).