Answer:
The Highly acidic proton joined to one of the carbon in the ALKYNE bond.
(Kindly Check the attachment for the drawing because the solution will need us to draw).
Explanation:
So, let us start by defining some major key terms in this particular Question given above;
(1). ISOMERIZATION: isomerization can simply be defined as the kind is of chemical rearrangement whichay lead to the breaking and the formation of new bonds.
(2). NaNH2 BASE: Sodium amide is a Chemical compound which has a Molar mass of 39.01 g/mol and Heat capacity (C) of 66.15 J/mol K. It is also known as sodamide. It is a good nucleophile.
(3). ALKYNE BOND: it is a C-C joined together by three bonds.
The chemical reaction given in the Question is given in the attachment too.
Therefore, The Highly acidic proton joined to one of the carbon in the ALKYNE bond is removed irreversibly by NaNH2 base.
Abiotic being is a non-living or sterile could cover a lot of elements in the desert ecosystem. Rocks, water, air
Hope it helped
Phosphoric acid has 3 pKa values (pKa1=2.1, pKa2=6.9, pKa3= 12.4) and after 3 ionization it gives 3 types of ions at different pKa values:
H₃PO₄(aq) + H₂O(l) ⇌ H₃O⁺(aq) + H₂PO₄⁻ (aq) pKₐ₁
<span>
</span>H₂PO₄⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + HPO₄²⁻ (aq) pKₐ₂
HPO₄²⁻(aq) + H₂O(l) ⇌ H₃O⁺(aq) + PO₄³⁻ (aq) pKₐ₃
The last equilibrium is associated with the highest pKa value (12.4) of phosphoric acid. There the last OH group will lose its hydrogen and hydrogen phosphate ion (HPO₄²⁻) turns into phosphate ion (PO₄³⁻).
Answer:
Electron-pair geometry: tetrahedral
Molecular geometry: trigonal pyramidal
Hybridization: sp³
sp³ - 4 p
Explanation:
There is some info missing. I think this is the original question.
<em>For NBr₃, What are its electron-pair and molecular geometries? What is the hybridization of the nitrogen atom? What orbitals on N and Br overlap to form bonds between these elements?</em>
<em>The N-Br bonds are formed by the overlap of the ___ hybrid orbitals on nitrogen with ___ orbitals on Br.</em>
<em />
Nitrogen is a central atom surrounded by 4 electron domains. According to VESPR, the corresponding electron-pair geometry is tetrahedral.
Of these 4 electron domains, 3 represent covalent bonds with Br and 1 lone pair. According to VESPR, the corresponding molecular geometry is trigonal pyramidal.
In the nitrogen atom, 1 s orbital and 3 p orbitals hybridize to form 4 sp³ orbitals for each of the electron domains.
The N-Br bonds are formed by the overlap of the sp³ hybrid orbitals on nitrogen with 4p orbitals on Br.