The velocity of the board relative to the ice is zero, since both are at rest.
<h3>What is relative velocity?</h3>
Relative velocity is the velocity of an object in relation to another reference object or point.
When two objects are travelling or moving with the same velocity in the same direction, the relative velocity one relative to the other is zero.
Also, when two objects are at rest, the relative velocity one relative to the other is zero.
Therefore, the velocity of the board relative to the ice is zero, since both are at rest.
Learn more about relative velocity at: brainly.com/question/24337516
#SPJ1
Answer:
The dog catches up with the man 6.1714m later.
Explanation:
The first thing to take into account is the speed formula. It is
, where v is speed, d is distance and t is time. From this formula, we can get the distance formula by finding d, it is 
Now, the distance equation for the man would be:

The distance equation for the dog would be obtained by the same way with just a little detail. The dog takes off running 1.8s after the man did. So, in the equation we must subtract 1.8 from t.

For a better understanding, at t=1.8 the dog must be in d=0. Let's verify:

Now, for finding how far they have each traveled when the dog catches up with the man we must match the equations of each one.






The result obtained previously means that the dog catches up with the man 3.8571s after the man started running.
That value is used in the man's distance equation.


Finally, the dog catches up with the man 6.1714m later.
I would say 648858. bc yes
Answer:
wind
Explanation:
wind is the only one of those onto that list that is a renewable source