The force of a test charge would be doubled if the electric field is doubled.
Answer: Option A
<u>Explanation:</u>
Electric field is the region or range up to which a charge particle will have its influence of electric energy on another charged particles. So the experienced force by the test charge up to a certain range is defined as the electric field of that charged particle.
This means that the electric field strength is inversely proportionate to the test charge and directly proportionate to the force acting on the test charge. As
,

So, force will be product of electric field strength with test charge. Thus,

So, if there is increase in the electric field, then there will be increase in the force of the test charge. Thus, if the electric field is doubled thereby the force of a test charge will also be doubled.
ADVANTAGE
PEOPLE USED CERTAIN UNIT OF MEASUREMENT IN THEIR SPECIFIC REGION WHICH IS NOT ACCEPTED BY WORLD IN CGS SYSTEM.CGS UNIT MADE
DIFFICULTY IN TRADE. LATER SI UNIT OF MEASUREMENT HAVE BEEN ADOPTED IN 1960 AD TO BRING THE uniformity IN measurement throughout THE WORLD. SI SYSTEM MADE THE MEASURENT AROUND WORLD MORE EFFECTIVE AND LESS COFUSING THAN CGS UNIT.
Answer:
332m/s
Explanation:
We know the formula for velocity is v=d/t, but this particular question is asking about an echo. The problem tells us the distance to the bird from the bat, which is 19.4. To find the echo, you need to find the distance from the bat to the bird and back.
So
19.4 x 2 = 38.8
And then plug into the equation
v = 38.8 / 0.117
= 332m/s
Answer:
the velocity component parallel to the magnetic field vector
Explanation:
When a charged particle moves in a helical path, we can decompose its velocity into two parts v_parallel and v_perpendicular to the magnetic field.
Let's analyze which component receives a force
F = q vxB
the bold letters indicate vectors, in the vector product if the two vectors are parallel the angle is zero and the sin 0 = 0 for which there is no force. therefore the velocity parallel to the field remains constant
If the two vectors are perpendicular, the angle is 90º and the sin 90 = 1, for which there is a force, which has a radial direction and consequently a centripetal acceleration that gives a circular path that does not remove the particle from the magnetic field
When checking the different answers, the correct one is: the velocity component parallel to the magnetic field vector
Diecioenjcxie9w09phxdoxuqbx8wix