The focal length of a magnifying glass is the distance between the focal point and optical centre of the magnifying glass.
<h3>Focal length</h3>
The focal length, f is the distance from a lens or mirror to the focal point, F.
This is the distance from a lens or mirror at which parallel light rays will meet for a converging lens or mirror or appear to diverge from for a diverging lens or mirror.
A magnifying glass is a converging lens which produces a enlarged, erect and virtual image when an object is placed between the focal point and optical centre.
A magnifying glass will bring to focus at a point sun rays which can cause the paper to catch fire if it is held in place for long.
This point at which the most concentrated ray of light is shining on the paper, is the focal point for that magnifying glass.
Therefore, the focal length of a magnifying glass is the distance between the focal point and optical centre of the magnifying glass.
Learn more about about focal length at: brainly.com/question/25779311
Answer:
T = 5163.89 N
Explanation:
Newton's first law:
∑F =0 Formula (1)
∑F : algebraic sum of the forces in Newton (N)
We define the x-axis in the direction parallel to the movement of the car on the ramp and the y-axis in the direction perpendicular to it.
Forces acting on the car
W: Weight of the car : In vertical direction
FN : Normal force : perpendicular to the ramp
T :Tension force: at angle of 31.0° above the surface of the ramp
Calculated of the Weight of the car (W)
W = m*g m: mass g:acceleration due to gravity
W = 1130-kg* 9.8 m/s² = 11074 N
x-y weight components
Wx = 11074 N*sin 25.0° = 4680.07 N
Wy = 11074 N*cos 25.0° = 10036.45 N
x-y Tension components
Tx = T*cos 25.0°
Ty = T*sin 25.0°
Newton's first law:
∑Fx =0 Formula (1)
Tx-Wx = 0
T*cos 25.0° - 4680.07 = 0
T*cos 25.0° = 4680.07
T = 4680.07 / cos 25.0°
T = 5163.89 N
Answer:
26.82m/s
Explanation:
Given
Mass = m= 0.4kg
Initial Velocity = u = 0
Charge = 4.0E-5C
Distance= d = 0.5m
Object Charge = 2E-4C
First, we'll calculate the initial energy (E)
E = Potential Energy
PE = kQq / d
Where k = coulomb constant = 8.99E9Nm²/C²
Energy is then calculated by;
PE = 8.99E9 * 4E-5 * 2E-4 / 0.5
PE = 143.84J
Energy = Potential Energy = Kinetic Energy
K.E = ½mv² = 143.84J
½mv² = ½ * 0.40 * v² = 143.85
0.2v² = 143.85
v² = 143.85/0.2
v² = 719.25
v = √719.25
v = 26.81883666380777
v = 26.82m/s
Hence, the object is 26.82m/s fast when the cart moving is very far (infinity) from the fixed charge
Answer:
Semiconductor. sorry i'm late
Explanation: