Answer:
72km/hr
Explanation:
Speed in Km is usually represented in hours. so if the car is in constant velocity, and if the car travels 36km in 30 min then it travels 72km in 1 hour.
so the speed of the car is 72km/hr
Answer:
it will not change
Explanation:
if the forces are of equal force then there would be no movement because one force was not stronger to move it
Answer:
The reading of the scale during the acceleration is 446.94 N
Explanation:
Given;
the reading of the scale when the elevator is at rest = your weight, w = 600 N
downward acceleration the elevator, a = 2.5 m/s²
The reading of the scale can be found by applying Newton's second law of motion;
the reading of the scale = net force acting on your body
R = mg + m(-a)
The negative sign indicates downward acceleration
R = m(g - a)
where;
R is the reading of the scale which is your apparent weight
m is the mass of your body
g is acceleration due to gravity, = 9.8 m/s²
m = w/g
m = 600 / 9.8
m = 61.225 kg
The reading of the scale is now calculated as;
R = m(g-a)
R = 61.225(9.8 - 2.5)
R = 446.94 N
Therefore, the reading of the scale during the acceleration is 446.94 N
1) The forces of molecules is how strong they are being held together. Now, we know that solid is the last one, because it's particles are held CLOSELY and VERY TIGHTLY together, which is why it has a definite shape.And last of all, a gas's particles are held freely, which is why it has no shape. So the answer would be:- gas, liquid, solid
3) The state of matter that does not have a definite shape, but has a definite volume is a liquid. So the answer is :- liquid
7) False, an endothermic reaction is when it absorbs energy, and as we know that in a chemical reaction as the following, it tends to be an exothermic reaction, meaning that is releases energy. So the answer is:- FALSE
8) Gases have particles that are far apart (freely) and move fast. So the answer is:- They are moving very fast and are far apart.<span> </span>
Answer:
C
Explanation:
The mechanical advantage is always less than 1 because the force needed to move an object is always greater than the weight of the object.