Answer:
Explanation:
The Carnot cycle is a special case of a thermodynamic cycle that produces an ideal gas and consists of two isothermal processes and two adiabatic processes. This cycle is a theoretical solution given by Sadi Karnot to refine heat engines for their efficient use.
The formula for the coefficient of efficiency is:
η = (Q₁ - Q₂) / Q₁ = (T₁ - T₂) / T₁
Where Q₁ is is the amount of heat of the heater supplied to the working body and Q₂ is the amount of heat that the working body transfers to the refrigerator according to this T₁ is the temperature of the heater T₂ is the temperature of the refrigerator.
This formula provides a theoretical limit for the maximum value of the coefficient of efficiency of heat engines.
God is with you!!!
A. lunar phases result from the changing lunar mass. Let me know if this helped.
Hihi!
The correct answer is B) <span>neutron keep protons apart so they don’t repel
each other! </span><span>The </span>neutron<span> also adds mass to the </span>atom<span>!
</span>
I hope I helped!
-Jailbaitasmr
The human body is connected in every way. All the organs are connected and help each other be alive. For example, the veins are connected to the heart, which help it by pumping blood and oxygen. If they weren’t there, the heart wouldn’t be able to sustain a life.
I really hope this gave you and ideas and helped you in some way:)
Answer:
The vertical velocity of the skater upon landing is 10.788 meters per second.
Explanation:
Skateboarder experiments a parabolic movement. As skateboarder jumps horizontally off the top of the staircase, it means that vertical component of initial velocity is zero and accelerates by gravity, the final vertical speed is calculated by the following expression:

Where:
- Initial vertical speed, measured in meters per second.
- Final vertical speed, measured in meters per second.
- Gravitational acceleration, measured in meters per square second.
- Time, measured in seconds.
Given that
,
and
, the final velocity of the skater upon landing is:


The vertical velocity of the skater upon landing is 10.788 meters per second.