Answer:
Check attachment for better understanding
Explanation:
Given that
a= 0.75m
b=1.31m
c= 2.2m
Weight of pole is 26.90
Then, Fg = Weight = 26.90
Using Equilibrium of forces
ΣFy = 0
U — D — Fg = 0
U — D = Fg
U — D = 26.9
To calculate U,
We will take moment about point A.
ΣMa = 0
Let the clockwise moment be positive and anti-clockwise be negative
Fg(a+b) — U(a) = 0
26.9(1.31+0.75) —0.75U = 0
26.9(2.06) = 0.75U
0.75U = 55.414
U = 55.414/0.75
U = 73.89 N
To calculate D,
U — D = 26.9
73.89—D =26.9
73.89—26.9 = D
D = 46.99N
Answer:
hi
<h3>BECAUSE MERCURY IS USED BECAUSE IT is the only liquid available in room temperature </h3>
Explanation:
pls mark as a BRAINLIST
In a closed system, the loss of momentum of one object is same as________ the gain in momentum of another object
according to law of conservation of momentum, total momentum before and after collision in a closed system in absence of any net external force, remains conserved . that is
total momentum before collision = total momentum after collision
P₁ + P₂ = P'₁ + P'₂
where P₁ and P₂ are momentum before collision for object 1 and object 2 respectively.
P'₁ - P₁ = - (P'₂ - P₂)
so clearly gain in momentum of one object is same as the loss of momentum of other object
In scientific notation", that number would be written as
6.81 x 10⁻⁴ .
Incomplete question as the unit of volume is not written correctly.So the complete question is here:
A straightforward method of finding the density of an object is to measure its mass and then measure its volume by submerging it in a graduated cylinder. What is the density of a 240-g rock that displaces 89.0 cm³?
Answer:

Explanation:
Given data
Mass m=240g
Volume V=89.0 cm³
To find
Density d
Solution
If rock displaces 89.0 cm³ of water means volume of rock is also 89cm³
So
