According to Newton's 2nd law of motion:
F = m * a where F is the force applied in Newtons, m is the mass of the object in kg, and a is the acceleration of the object in m/

.
Therefore the force applied in this situation is simply:
F = 6 kg * 2.3 m/

= 13.8 N
Hope this helps!
Answer:
b
Explanation:
friction needs two objects
the two objects need to touch each other
the two objects need to either have relative movement or, tend to have relative movement urge. (kinetic friction or static friction)
The magnitude of that other charge will be 9×10⁻⁵ C. The force on the charge is inverse of the distance.
<h3>What is Columb's law?</h3>
The force of attraction between two charges, according to Coulomb's law, is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.
The magnitude of that other charge is found as;

Hence, the magnitude of that other charge will be 9×10⁻⁵ C.
To learn more about Columb's law, refer to the link;
brainly.com/question/1616890
#SPJ1
The only thing we know of so far that can shift light to longer wavelengths is the "Doppler" effect. If the source and the observer are moving apart, then the observer sees wavelengths that are longer than they should be. If the source and the observer are moving toward each other, then the observer sees wavelengths that are shorter than they should be. It works for ANY wave ... sound, light, water etc. The trick is to know what the wavelength SHOULD be. If you know that, then you can tell whether you and the source are moving together or apart, and you can even tell how fast. If the lines in a star"s spectrum are at wavelengths that are too long, then from everything we know right now, the star and Earth are moving apart.
Answer:
D. location
Explanation:
The gravitational field strength of Earth is determined by the virtue of the location within the Earth's gravitational field.
That's why all objects regardless of their mass, shape, and size free fall towards the Earth with an acceleration equal to the acceleration at that location in the absence of air resistance.
According to the gravitational force between two bodies, the force experienced by one body due to the other is independent of its own mass.
The gravitational force is given by equation
F = GMm/r²
If F is the force acting on the smaller body of mass 'm', then
F = ma
Therefore, the equation becomes,
ma = GMm/r²
a = GM/r²
The value of 'a' changes with respect to the value of 'r' such that if 'r' is the radius of the Earth, then the acceleration at a height 'h' from Earth surface is given by
a = GM/(r+h)²
Here it is clear that the acceleration at any point is only the inherent property of the Earth itself.
The gravitational field strength of Earth is determined by the virtue of the location within the Earth's gravitational field.