Answer:
ΔG = 18KJ/mol
Explanation:
Given data:
ΔS = 0.09 Kj/mol.K
ΔH = 27 KJ/mol
Temperature = 100 K
ΔG = ?
Solution:
Formula:
ΔG = ΔH - TΔS
ΔH = enthalpy
ΔS = entropy
by putting values,
ΔG = 27 KJ/mol - 100K(0.09 Kj/mol.K)
ΔG = 27 KJ/mol - 9 KJ/mol
ΔG = 18KJ/mol
I think it might be 2 but I could be mistaken sorry if I am
- The change in color from blue to pink of the cobalt complexes here has been the basis of cobalt chloride indicator papers for the detection of the presence of water. It is also used in self-indicating silica gel desiccant granules.
- Pink cobalt species + chloride ions ⇌ Blue cobalt species + water molecules
<u>Explanation</u>:
- The adjustment in color from blue to the pink of the cobalt complexes here has been the premise of cobalt chloride indicator papers for the detection of the presence of water. It is likewise utilized in self-demonstrating silica gel desiccant granules.
Pink cobalt species + chloride particles ⇌ Blue cobalt species + water molecules
-
The response of [Co(H2O)6]2+(aq) + 4Cl–(aq) → [CoCl4]2–(aq) + 6H2O(l) is endothermic. In this manner, as per Le Chatelier's rule, when the temperature is raised, the situation of the balance will move to one side, shaping a greater amount of the blue complex particle at the expense of the pink species.
-
Including concentrated hydrochloric raises the chloride particle fixation, making the equilibrium move to one side, as per Le Chatelier. Including water brings down the chloride particle fixation, moving the equilibrium the other way.
-
As an extension, it is conceivable to show that it is the Cl–particles in the hydrochloric acid that move the balance by including a spatula of sodium chloride rather than the pink arrangement. This delivers a bluer color, however, this may take some time because the salt is delayed to dissolve.
The exothermic process is a process or reaction that involves a release of energy from the system to its surroundings in various forms usually through heat, light, electricity or sound. In the four given choices, when melting a copper, you try to immerse the metal in heaping coals of fire. The metal will absorb the thermal energy coming from the coal, thus, once you retrieve the metal back, light will be emitted from it as well as heat.
Therefore, the answer is B. MELTING OF COPPER
Answer:
When scientist find new species that may have to change classification systems in order to accommodate them. DNA sequencing has also let us find out more about evolutionary relationships. The more recent the common ancestor, the more closely related the two species are.
Explanation: