Answer:
<em>The range is 35.35 m</em>
Explanation:
<u>Projectile Motion</u>
It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.
Being vo the initial speed of the object, θ the initial launch angle, and
the acceleration of gravity, then the maximum horizontal distance traveled by the object (also called Range) is:

The projectile was launched at an angle of θ=30° with an initial speed vo=20 m/s. Calculating the range:



The range is 35.35 m
Answer:
<h3> 3.057m</h3>
Explanation:
According to law of gravitation;
F = GMm/d²
G is the universal gravitation
M and m are the masses
d is the distance between the masses
d² = GMm/F
d² = 6.67408 × 10-11 *3000*7000/0.0015
d² = 140.15568*10^-5/0.0015
d² = 1.4016*10^-3/0.0015
d² = 1.4016*10^-3/1.5*10^-3
d² = 0.9344*10
d² = 9.344
d = √9.344
d = 3.057m
Hence the distance between the two objects is 3.057m
Answer:middle
Explanation:
Because it will make the seasaw balanced
-- Momentum is (mass) x (speed).
Object B has 1.5 times as much momentum as Object A has.
-- Kinetic energy is (1/2) x (mass) x (speed) .
Object B has 1.5 times as much kinetic energy as Object A has.
-- If they would both stop long enough to get on the scale,
Object B would weigh 1.5 times as much as Object A does.