Answer:
Star A is brighter than Star B by a factor of 2754.22
Explanation:
Lets assume,
the magnitude of star A = m₁ = 1
the magnitude of star B = m₂ = 9.6
the apparent brightness of star A and star B are b₁ and b₂ respectively
Then, relation between the difference of magnitudes and apparent brightness of two stars are related as give below: 
The current magnitude scale followed was formalized by Sir Norman Pogson in 1856. On this scale a magnitude 1 star is 2.512 times brighter than magnitude 2 star. A magnitude 2 star is 2.512 time brighter than a magnitude 3 star. That means a magnitude 1 star is (2.512x2.512) brighter than magnitude 3 bright star.
We need to find the factor by which star A is brighter than star B. Using the equation given above,



Thus,

It means star A is 2754.22 time brighter than Star B.
Answer:
A
Explanation:
The line(A) goes throughout the entire picture. So therefore choice A would be it's length.
Answer:
Part a)

Part b)



Part c)



Explanation:
Part a)
As we know that charge density is the ratio of total charge and total volume
So here the volume of the charge ball is given as



now the charge density of the ball is given as

Part b)
Now the charge enclosed by the surface is given as

at radius of 5 cm


at radius of 10 cm


at radius of 20 cm

Part c)
As we know that electric field is given as

so we have electric field at r = 5 cm


electric field at r = 10 cm


electric field at r = 20 cm


C Occupational Safety and Health Administration
The nuclear fusion of hydrogen atoms releases a huge amount of energy. So the correct choice is C. Conversion of mass to energy.
What is nuclear fusion?
When two small nuclei join to form a new nucleus, then this process is termed nuclear fusion. A huge amount of energy is released when there occurs nuclear fusion between the two nuclei. And a new element is formed.
It has been observed that the amount of energy released in nuclear fusion is equal to the mass difference between the mass of the formed nucleus and the total mass of old nuclei. Hence in the nuclear fusion of hydrogen nuclei to form a helium nucleus, the energy is released due to the conversion of mass into energy.
The pressure is increased to make the hydrogen atoms fuse but this change in pressure does not contribute to the energy released in the fusion of hydrogen.
The magnitude of the gravitational field is too low and it does not contribute to the energy released in the fusion of hydrogen.
The gravitational collapse does not occur between the two hydrogen atoms. This phenomenon occurs in celestial bodies so this also does not contribute to the energy released in the fusion of hydrogen.
Learn more about nuclear fusion here:
brainly.com/question/10165218
#SPJ4