Ok? I don’t know what you want me to do though
Answer:
Red has the lowest energy and violet the highest. Beyond red and violet are many other kinds of light our human eyes can't see, much like there are sounds our ears can't hear. On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light.
Explanation:
Answer:
A)
= 1.44 kg m², B) moment of inertia must increase
Explanation:
The moment of inertia is defined by
I = ∫ r² dm
For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is
I = ½ m R²
A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is
I =
+ m D²
Let's apply these equations to our case
The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms
=
+ 2
= ½ M R²
The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body
M = 7/8 m total
M = 7/8 64
M = 56 kg
The mass of the arms is
m’= 1/8 m total
m’= 1/8 64
m’= 8 kg
As it has two arms the mass of each arm is half
m = ½ m ’
m = 4 kg
The arms are very thin, we will approximate them as a particle
= M D²
Let's write the equation
= ½ M R² + 2 (m D²)
Let's calculate
= ½ 56 0.20² + 2 4 0.20²
= 1.12 + 0.32
= 1.44 kg m²
b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase
Answer:

Explanation:
When a standing wave is formed with six loops means the normal mode of the wave is n=6, the frequency of the normal mode is given by the expression:

Where
is the length of the string and
the velocity of propagation. Use this expression to find the value of
.

The velocity of propagation is given by the expression:

Where
is the desirable variable of the problem, the linear mass density, and
is the tension of the cord. The tension is equal to the weight of the mass hanging from the cord:

With the value of the tension and the velocity you can find the mass density:

