There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
I think the answer is CuF2
Answer:
point-contact transistors
Answer:
the greater the height of an object the *greater* its gravitational potential energy
greater
Answer:
19.99 kg m²/s
Explanation:
Angular Momentum (L) is defined as the product of the moment of Inertia (I) and angular velocity (w)
L = m r × v.
r and v are perpendicular to each other,
where r = lsinθ.
l = 2.4 m
θ= 34°
g = 9.8 m/s² and m = 5 kg
resolving using newtons second law in the vertical and horizontal components.
T cos θ − m g = 0
T sin θ − mw² lsin θ = 0
where T is the force with which the wire acts on the bob
w = √g / lcosθ
= √ 9.8 / 2.4 ×cos 34
= 2.2193 rad/s
the angular momentum L = mr× v
= mw (lsin θ)²
= 5 × 2.2193 (2.4 ×sin 34°)²
=19.99 kg m²/s