1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KengaRu [80]
4 years ago
13

Which would take more force to stop in 10 seconds: an 8.0-kilogram ball rolling in a straight line at a speed of 0.2 m/sec or a

4.0-kilogram ball rolling along the same path at a speed of 1.0 m/sec?

Physics
2 answers:
Brilliant_brown [7]4 years ago
7 0

Answer:

4.0 kilogramas

Explanation:

gayaneshka [121]4 years ago
6 0
I use the impulse momentum formula.
the 4.0 kilogram ball requires more force to stop

You might be interested in
Two small spheres assumed to be identical conductors are placed at 30 cm from each other on a horizontal axis. the first S1 is l
charle [14.2K]

a) The electric force exerted by S1 on S2 is 21.58μN.

In this case we are talking about two different types of charges, a positive charge and a negative charge, therefore, they are sensing a force of attraction.  

The magnitude of the force is determined by using the following formula:

F_{e}=k_{e}\frac{|q_{1}||q_{2}|}{r^{2}}

where:

= Electric force [N]

= Electric constant ()

= First charge [C]

= Second charge [C]

r =  distance between the two charges

So, in this case, the force can be calculated like this:

F_{e}=(8.99x10^{9}N\frac{m^{2}}{C^{2}})\frac{|12x10^{-9}C||18x10^{-9}C|}{(30x10^{-2}m)^{2}}

So the force will be equal to:

F=21.58x10^{-6}N

which is the same as:

F=21.58 \micro N

b) The electric field created by S1 at the level of S2 is 1.20 \frac{kN}{C}

The electric field tells us how many Newtons of force can be applied on a given point in space per unit of charge caused by an existing electric charge. From the concept, we can take the following formula for the electric field.

E_{S1}=\frac{F_{e}}{q_{2}}

where:

= electric field generated by the first sphere.

 

E_{S1}=\frac{1.20 x10^{-6}N}{18x10^{-9}C}

which yields:

E_{S1}=1.20x10^{3} \frac{N}{C}

E_{S1}=1.20 \frac{kN}{C}

When talking about electric fields, we know what their direction is if we suppose the electric field is always affecting a positive charge in the given point in space. In this case, since S1 is positive, we can asume the electric field is in a direction away from S1.

c)

The electric potential created by S1 at the level or S2 is 360V

Electric potential is defined to be the amount of energy you will have at a given point per electric charge. This electric potential can be found by using the following formula:

V=Er

Where V is the electric potential and it is given in volts.

  • Volts are defined to be 1 Joule per Coulomb. Energy by electric charge.

So we can use the data found in the previous sections to find the electric potential:

V=(1.20x10^{3} \frac{N}{C})(30x10^{-2}m)

V=360V

d)  The force exerted by S2 on S1 will be the same in magnitude as the force exerted by S1 on S2 but oposite in direction. This is because the force will depend on the two charges, and the distance between them, so:

The electric force exerted by S1 on S2 is 21.58μN.

 

The magnitude of the force is determined by using the following formula:

F_{e}=k_{e}\frac{|q_{1}||q_{2}|}{r^{2}}

F_{e}=(8.99x10^{9}N\frac{m^{2}}{C^{2}})\frac{|12x10^{-9}C||18x10^{-9}C|}{(30x10^{-2}m)^{2}}

So the force will be equal to:

F=21.58x10^{-6}N

which is the same as:

F=21.58 \micro N

e) The electric field generated by S1 in the middle of S1 and S2 is 4.79 \frac{kN}{C}

In order to find the electric field generated by S1, we can make use of the following formula

E=k_{e} \frac{q_{1}}{r_{1}^{2}}

E=(8.99x10^{9} N\frac{m^{2}}{C^{2}})(\frac{12x10^{-9}C}{(15x10^{-2}m)^{2}})

which yields:

E=4.79 \frac{kN}{C}

f)  The electric field in the middle of S1 and S2 is 11.99 \frac{kN}{C}

In order to find the electric field generated by two different charges at a given point is found by using the following formula:

E=k_{e} \sum \frac{q_{i}}{r_{i}^{2}}

where:

q_{i}= each of the charges in the system

r_{i}= the distance between each of the charges and the point we are analyzing.

Since the electric field is a vector, we need to take into account the individual electric fields' directions. In this case we suppose we have a positive test charge between the two charges. We can see that the positive test charge will sense a force in the same direction independently on if the force is excerted by the positive charge or the negative charge. Therefore both electric fields will have the same direction. We'll suppose the electric fields will be positive then, so:

E=(8.99x10^{9} N\frac{m^{2}}{C^{2}})[\frac{12x10^{-9}C}{(15x10^{-2}m)^{2}}+\frac{18x10^{-9}C}{(15x10^{-2}m)^{2}}]

which yields:

E=11.99 \frac{kN}{C}

g) The electric potential in the middle of S1 and S2 is 1.80 kV

Since we know what the electric field is from the previous question, we can make use of the same formula we used before to find the electric potential in the middle of S1 and S2

So let's take the formula:

V=Er

So we can use the data found in the previous sections to find the electric potential:

V=(11.99x10^{3} \frac{N}{C})(15x10^{-2}m)

V=1.80kV

h)

The electric potential generated by S2 on the position of S1 is 539.4V and can be found by using the following formula:

V=k_{e}\frac{q_{2}}{r}

So we can use the data provided by the problem to find the electric potential.

V=(8.99x10^{9} N\frac{m^{2}}{C^{2}})(\frac{18x10^{-9}C}{30x10^{-2}m})

V=539.4V

8 0
3 years ago
A plan to budget time for studying and activities is referred to as? a study routine study habits study skills a study schedule
ad-work [718]

Answer:

a study schedule

Explanation:

5 0
3 years ago
Whats is the definition of Parallel Circuit
Aleksandr-060686 [28]
A parallel circuit is one in which there's a place where the flow of current
can split up and follow different paths.

An example might be: 
Two lamps plugged into the same outlet and both turned on.

Current that comes out of the outlet splits up, and parts of it flow
through each lamp.
3 0
3 years ago
Read 2 more answers
what causes ocean water near the equator to be warmer than ocean water farther north? a. upwellings spew warm water toward the e
Burka [1]
The structure and curvature of the Earth results in beams of sunlight glancing off the equator and reaching other areas of the Earth. This means that the areas at the equator receive more energy as sun's rays hit them directly.
Therefore, the answer is C.
8 0
3 years ago
Read 2 more answers
Action - reaction forces are created at the ________ time and act upon __________ objects
MArishka [77]
Newton's Third Law- For every action there is an equal and opposite reaction... Does this answer your question? If not, I can explain further...
6 0
3 years ago
Other questions:
  • The resultant of the concurrent forces is 300 lb pointing up along the Y axis. Compute the values of F and the angle required to
    12·2 answers
  • How does a quasar differ from a galaxy?
    5·1 answer
  • A uniform conducting rod of length 34 cm has a potential difference across its ends equal to 39 mV (millivolts). What is the mag
    8·2 answers
  • You are testing a new amusement park roller coaster with an empty car with a mass of 108kg. One part of the track is a vertical
    10·1 answer
  • Need help with this one please
    15·1 answer
  • .Why does it take double the applied force to move a mass double the size?
    10·1 answer
  • What direction does tangential velocity point?
    7·1 answer
  • A ball of mass 0.5 kg is at point with initial speed 4 m/s at height 10. what is the total energy​
    10·1 answer
  • If Sherry took her pulse for 6 seconds and felt 14 beats, What would her heart rate be?
    5·1 answer
  • What mass of lead has the same volume as 1600kg of gasoline?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!