1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
avanturin [10]
3 years ago
13

You throw a baseball straight up in the air so that it rises to a maximum height much greater than your height. Is the magnitude

of the ball’s acceleration greater while it is being thrown or after it leaves your hand? Explain.
Physics
1 answer:
Montano1993 [528]3 years ago
5 0

The ball's acceleration is constant in magnitude and direction, from the instant it leaves your hand, until the instant it hits the ground, no matter what direction or speed you throw it.

It's the acceleration of gravity, on whatever planet you happen to be standing when you throw the ball.

You might be interested in
During Mr. Nye's science class, students were expected to identify various substances using physical properties they could easil
nydimaria [60]
Density is the best property to use, as while multiple different metals could create cubes with the same color, mass, or volume, no different metal could create a cube with the same mass and volume.  Density is based on mass and volume, and as a result no two different metals will have the same density.
4 0
3 years ago
Read 2 more answers
A television remote control uses infrared light with a wavelength of 940 nm. What is the frequency of the light?
Ronch [10]

Answer:

Frequency = 3.19 * 10^14 Hz or 1/s

Explanation:

Relationship b/w frequency and wavelength can be expressed as:

C = wavelength * frequency, where c is speed of light in vacuum which is 3.0*10^8 m/s.

Now simply input value (but before that convert wavelength into meters to match the units, you do this by multiply it by 10^-9 so it will be 940*10^-9)

3.0 * 10^8 = Frequency * 940 x 10^-9

Frequency = 3.19 * 10^14 Hz or 1/s

5 0
3 years ago
A copper Wire has a length of 160 m,and a diameter of 1.0 mm,if ,the wire is connected to a 1.5-Volt battery ,How much Current f
makkiz [27]
Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.
3 0
4 years ago
The angle between the axes of two polarizing filters is 45.0^\circ45.0 ​∘ ​​ . By how much does the second filter reduce the int
suter [353]

Answer

given,                                                                      

angle between two polarizing filters = 45°

filter reduce intensity = ?                          

a) I = I₀ Cos² θ                                

here θ = 45⁰                                

I = \dfrac{I_0}{2}                      

intensity of the light is reduced by 0.500

correct answer from the given option D

b) direction of the polarization                    

                        θ = 45°                  

7 0
3 years ago
A bowling ball that has a radius of 11.0 cm and a mass of 5.00 kg rolls without slipping on a level lane at 2.80 rad/s.
NemiM [27]

Answer:

\dfrac{K_t}{K_r}=\dfrac{5}{2}

Explanation:

Given that,

Mass of the bowling ball, m = 5 kg

Radius of the ball, r = 11 cm = 0.11 m

Angular velocity with which the ball rolls, \omega=2.8\ rad/s

To find,

The ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball.

Solution,

The translational kinetic energy of the ball is :

K_t=\dfrac{1}{2}mv^2

K_t=\dfrac{1}{2}m(r\omega)^2

K_t=\dfrac{1}{2}\times 5\times (0.11\times 2.8)^2

The rotational kinetic energy of the ball is :

K_r=\dfrac{1}{2}I \omega^2

K_r=\dfrac{1}{2}\times \dfrac{2}{5}mr^2\times \omega^2

K_r=\dfrac{1}{2}\times \dfrac{2}{5}\times 5\times (0.11)^2\times (2.8)^2

Ratio of translational to the rotational kinetic energy as :

\dfrac{K_t}{K_r}=\dfrac{5}{2}

So, the ratio of the translational kinetic energy to the rotational kinetic energy of the bowling ball is 5:2

4 0
3 years ago
Other questions:
  • Tell the value of the underlined digit 843,208,732,833 eight is underlined
    12·2 answers
  • A goldfish is swimming at 3.20 cm/stoward the front wall of a rectangular aquarium. What is theapparent speed of the fish as mea
    14·1 answer
  • John is traveling north at 20 meters/second and his friend Betty is traveling south at 20 meters/second. If north is the positiv
    8·2 answers
  • Force F → = (−8.0 N)iˆ + (6.0 N)jˆ acts on a particle with position vector r → = (3.0 m)iˆ + (4.0 m)jˆ. What are (a) the torque
    12·1 answer
  • Explain why you can hear two people talking even after they walk around a corner.
    5·2 answers
  • What is the speed of a bobsled whose distance-time graph indicates that it traveled 114m in 30s? m/s
    13·1 answer
  • This image shows an overhead view of Atlanta’s buildings, structures, and surrounding areas and a heat map of the area. What is
    9·2 answers
  • A sling-thrower puts a stone (0.250 kg) in the sling's pouch (0.010 kg) and then begins to make the stone and pouch move in a ve
    12·1 answer
  • The planes LA534 and LA639 are coming in for a landing on the same runway which means they are each lowering their altitude. Not
    7·1 answer
  • Arm ab has a constant angular velocity of 16 rad/s counterclockwise. At the instant when theta = 60
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!