Answer:
1.7x10^8 Hz
Explanation:
Frequency could be explained as the number of occurrences of a repeating event at a time
Given:
wavelength = 1.8 meters
The frequency f of the waves can be calculated using f = c / λ
Where c (m/s) is the speed of the wave
λ (m) is the wavelength
Speed c= 3*10^8 m/s
Frequency f= 3*10^8 /1.8
Frequency= 1.7x10^8 Hz
Therefore,the frequency of waves from a radar detector is 1.7x10^8 Hz
The color changes, heat change, smell change, are a few

Now, balance the equation:


in gaseous state exist as a diatomic molecule.
Answer:
Explanation:
Common Examples of the Law of Definite Proportions
Water, written as the chemical compound H20, is made up of atoms of hydrogen and oxygen. If one oxygen atom is combined with two hydrogen atoms, water is created.
Answer:
a) First-order.
b) 0.013 min⁻¹
c) 53.3 min.
d) 0.0142M
Explanation:
Hello,
In this case, on the attached document, we can notice the corresponding plot for each possible order of reaction. Thus, we should remember that in zeroth-order we plot the concentration of the reactant (SO2Cl2 ) versus the time, in first-order the natural logarithm of the concentration of the reactant (SO2Cl2 ) versus the time and in second-order reactions the inverse of the concentration of the reactant (SO2Cl2 ) versus the time.
a) In such a way, we realize the best fit is exhibited by the first-order model which shows a straight line (R=1) which has a slope of -0.0013 and an intercept of -2.3025 (natural logarithm of 0.1 which corresponds to the initial concentration). Therefore, the reaction has a first-order kinetics.
b) Since the slope is -0.0013 (take two random values), the rate constant is 0.013 min⁻¹:

c) Half life for first-order kinetics is computed by:

d) Here, we compute the concentration via the integrated rate law once 1500 minutes have passed:

Best regards.