When we convert the given mass in grams and volume in liters to m/v percent, we recall that m/v percent is expressed as grams/100 milliliters. In this case the expression becomes (50 grams/ 2500 L)*(0.1L/100ml), that is equal to 0.002 grams/ 100 mL. Hence the the concentration is equal to 0.2 m/v percent.
Answer:0.8742j/g°C
Explanation: SOLUTION
GIVEN
length of bar=1.25m
mass 382g
temperature= 20°C to 288°C
Q=89300J
Specific Heat Capacity will be calculated using
Q=mC∆T
where
C = specific heat capacity
Q = heat
m = mass
Δ T = change in temperature
C=Q/ m∆T
=89300/382X(288-20.6)
=0.8742j/g°C
Answer: picture shows work for # 1,2,4,5,7
Explanation:
number 3: as the pressure in the volume decreases, the volume increases causing it to expand and eventually blow.
number 6: because the temperature and the amount of gas don’t change, these terms don’t appear in the equation. What Boyle’s law means is that the volume of a mass of gas is inversely proportional to its pressure. This linear relationship between pressure and volume means doubling the volume of a given mass of gas decreases its pressure by half.
hope this helps :))
10 electrons
Explanation:
The maximum number of electrons in a single d-subshell is 10 electrons.
The d-sub-orbital used to denote azimuthal or secondary quantum numbers.
The maximum number of electrons in the orbitals of sublevels are:
two electrons in the s-sublevel, it has one orbital
six electrons in the p-sublevel, it has three orbital
ten electrons in the d- sublevel, it has five orbitals
fourteen electrons in the f-sublevel, it has seven orbitals
The maximum number of electrons in an orbital is two.
learn more:
Atomic orbitals brainly.com/question/1832385
#learnwithBrainly
Answer:
The identity of an atom is determined my the number of <u>protons</u>. This is the <u>atomic number</u>.
The particle(s) found inside the nucleus are called <u>protons and neutrons</u>. Their combined mass is referred to as <u>the mass number</u>.
Isotopes have the same number of <u>protons</u>, but different number of <u>neutrons</u>.