Answer: A. 
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed = 4.56 J
m = mass of substance = 123 g
c = specific heat capacity = ?
Change in temperature ,
Putting in the values, we get:


The specific heat of a 123 g substance that requires 4.56 J of heat in order to increase its temperature by 12.32 °C is 
What question do you need help with
Answer:
The new volume is 2415 mL
Explanation:
The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C are used and are reference values for gases.
Boyle's law says that the volume occupied by a given gas mass at constant temperature is inversely proportional to the pressure and is expressed mathematically as:
P * V = k
Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the gas pressure increases. And when the temperature is decreased, the gas pressure decreases. This can be expressed mathematically in the following way:

Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:

Having two different states, an initial state and an final state, it is true:

In this case:
- P1= 0.9 atm
- V1=4,600 mL= 4.6 L (being 1 L=1,000 mL)
- T1= 195 °C= 468 °K (being 0°C=273°K)
The final state 2 is in STP conditions:
- P2= 1 atm
- V2= ?
- T2= 0°C= 273 °K
Replacing:

Solving:

V2= 2.415 L =2,415 mL
<u><em>The new volume is 2415 mL</em></u>
Answer: d) -705.55 kJ
Explanation:
Heat of reaction is the change of enthalpy during a chemical reaction with all substances in their standard states.

Reversing the reaction, changes the sign of 


On multiplying the reaction by
, enthalpy gets half:


Thus the enthalpy change for the given reaction is -705.55kJ