Hydrogen gas(H2) has a molar mass of 2 g. Molar mass of a substance is defined as the mass of 1 mole of that substance. And by 1 mole it is meant a collection of 6.022*10^23 particles of that substance.
So number of moles of H2 are 0.5 in this case. And thus it means there are (6.022*10^23)*0.5 particles( here they are molecules) in 1g of H2.
Answer:G
Explanation:
I would look it up on safari just to be sure tho, hope this helps
<span>1.18 x 3 = 3.55 </span>
find ratio of F to F in each compound
. according to law of multiple proportions that the masses of one element which combine with a fixed mass of the second element are in a ratio of whole numbers.
now F is "one element" and S has "fixed mass",
the ratio of F6 to Fx = 3:1
<span>thats why x= 2
there is less F in SFx
the ratio is 3:1.
dividing 6 by 3 and you get 2</span>
In your hand, the ball has higher potential energy than kinetic because it is still off of the ground but it isn't moving so there is no kinetic. As the ball rises, its potential and kinetic energy increases. At its peak, it has very high potential energy and very low kinetic energy. As it falls, the potential energy decreases but kinetic does not.
Answer:
9.1 seconds
Explanation:
Given that for a second order reaction
1/[A]t = kt + 1/[A]o
Where [A]t= concentration at time = t= 0.340M
[A]o= initial concentration = 0.820M
k= rate constant for the reaction=0.190m-1s-1
t= time taken for the reaction (the unknown)
Hence;
(0.340)^-1 = 0.190×t + (0.820)^-1
t= (0.340)^-1 - (0.820)^-1/0.190
t= 9.1 seconds
Hence the time taken for the concentration to decrease from 0.840M to 0.340M is 9.1 seconds.