1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stealth61 [152]
2 years ago
5

Safety measures to be taken during technical drawing​

Engineering
1 answer:
Pavlova-9 [17]2 years ago
3 0

Explanation:

Couldn't you just leave it in centimeters?

You might be interested in
A plant has ten machines and currently operates two 8-hr shift per day, 5 days per week, 50 weeks per year. the ten machines pro
Zarrin [17]

Answer:

  83.6%

Explanation:

<h3>(a)</h3>

On its current schedule, the plant can theoretically produce ...

  (30 pc/h/machine)(10 machine)(8 h/shift)(2 shift/day)(5 day/wk)(50 wk/yr)

  = (30)(10)(8)(2)(5)(50) pc/yr = 1,200,000 pc/yr

__

<h3>(b)</h3>

On the proposed schedule, this production becomes ...

  (30 pc/mach)(10 mach)(8 h/sh)(3 sh/da)(6 da/wk)(51 wk/yr)

  = (30)(10)(8)(3)(6)(51) pc/yr = 2,203,200 pc/yr

The increase in capacity is ...

  (2,203,200/1,200,000 -1) × 100% = 83.6% . . . capacity increase

_____

<em>Additional comment</em>

The number of parts per shift did not change. Only the number of shifts per year changed. It went up by a factor of (3/2)(6/5)(51/50) = 1.836. Hence the 83.6% increase in capacity.

We have to assume that maintenance and repair are done as effectvely as before in the reduced down time that each machine has.

3 0
2 years ago
Use the map to answer the question.
djverab [1.8K]

Answer:

Captain falcon

Explanation:

7 0
2 years ago
Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320
lesya [120]

Answer:

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

Explanation:

The complete statement of this question is "Five bolts are used in the connection between the axial member and the support. The ultimate shear strength of the bolts is 320 MPa, and a factor of safety of 4.2 is required with respect to fracture. Determine the minimum allowable bolt diameter required to support an applied load of P = 450 kN"

Each bolt is subjected to shear forces. In this case, safety factor is the ratio of the ultimate shear strength to maximum allowable shear stress. That is to say:

n = \frac{S_{uts}}{\tau_{max}}

Where:

n - Safety factor, dimensionless.

S_{uts} - Ultimate shear strength, measured in pascals.

\tau_{max} - Maximum allowable shear stress, measured in pascals.

The maximum allowable shear stress is consequently cleared and computed: (n = 4.2, S_{uts} = 320\times 10^{6}\,Pa)

\tau_{max} = \frac{S_{uts}}{n}

\tau_{max} = \frac{320\times 10^{6}\,Pa}{4.2}

\tau_{max} = 76.190\times 10^{6}\,Pa

Since each bolt has a circular cross section area and assuming the shear stress is not distributed uniformly, shear stress is calculated by:

\tau_{max} = \frac{4}{3} \cdot \frac{V}{A}

Where:

\tau_{max} - Maximum allowable shear stress, measured in pascals.

V - Shear force, measured in kilonewtons.

A - Cross section area, measured in square meters.

As connection consist on five bolts, shear force is equal to a fifth of the applied load. That is:

V = \frac{P}{5}

V = \frac{450\,kN}{5}

V = 90\,kN

The minimum allowable cross section area is cleared in the shearing stress equation:

A = \frac{4}{3}\cdot \frac{V}{\tau_{max}}

If V = 90\,kN and \tau_{max} = 76.190\times 10^{3}\,kPa, the minimum allowable cross section area is:

A = \frac{4}{3} \cdot \frac{90\,kN}{76.190\times 10^{3}\,kPa}

A = 1.640\times 10^{-3}\,m^{2}

The minimum allowable cross section area can be determined in terms of minimum allowable bolt diameter by means of this expression:

A = \frac{\pi}{4}\cdot D^{2}

The diameter is now cleared and computed:

D = \sqrt{\frac{4}{\pi}\cdot A}

D =\sqrt{\frac{4}{\pi}\cdot (1.640\times 10^{-3}\,m^{2})

D = 0.0457\,m

D = 45.7\,mm

The minimum allowable bolt diameter required to support an applied load of P = 450 kN is 45.7 milimeters.

5 0
3 years ago
There are three options for heating a particular house: a. Gas: $1.33/therm where 1 therm=105,500 kJ b. Electric Resistance: $0.
sergejj [24]

Answer:

Option ‘a’ is the cheapest for this house.

Explanation:

Cheapest method of heating must have least cost per kj of energy. So, convert all the energy in the same unit (say kj) and take select the cheapest method to heat the house.

Given:

Three methods are given to heat a particular house are as follows:

Method (a)

Through Gas, this gives energy of amount $1.33/therm.

Method (b)

Through electric resistance, this gives energy of amount $0.12/KWh.

Method (c)

Through oil, this gives energy of amount $2.30/gallon.

Calculation:

Step1

Change therm to kj in method ‘a’ as follows:

C_{1}=\frac{\$ 1.33}{therm}\times(\frac{1therm}{105500kj})

C_{1}=1.2606\times10^{-5} $/kj.

Step2

Change kWh to kj in method ‘b’ as follows:

C_{2}=\frac{\$ 0.12}{kWh}\times(\frac{1 kWh }{3600kj})

C_{2}=3.334\times10^{-5} $/kj.

Step3

Change kWh to kj in method ‘c’ as follows:

C_{3}=\frac{\$ 2.30}{gallon}\times(\frac{1 gallon }{138500kj})

C_{3}=1.66\times10^{-5} $/kj.

Thus, the method ‘a’ has least cost as compare to method b and c.

So, option ‘a’ is the cheapest for this house.

 

5 0
3 years ago
A motorist enters a freeway at 25 mi/h and accelerates uniformly to 65 mi/h. From the odometer in the car, the motorist knows th
Helga [31]

Answer:

a) 2.2 m/s² b) 8 s

Explanation:

a) Assuming that the acceleration is constant, we can use any of the kinematic equations to solve the question.

As we don´t know the time needed to accelerate, we can use the following equation:

vf2 – vo2 = 2*a*∆x

At first, we can convert the values of vf, vo and ∆x, to SI units, as follows:

vf = 65 mi/h* (1,605 m / 1mi) * (1h/3,600 sec) = 29 m/s

vo = 25 mi/h *(1,605 m / 1mi) * (1h/3,600 sec) = 11.2 m/s

∆x = 0.1 mi*(1,605 m / 1mi) = 160.5 m

Replacing these values in (1), and solving for a, we have:

a = (29 m/s – 11.2 m/s) / 321 m = 2.2 m/s2

b) In order to obtain the time needed to reach to 65 mi/h, we can rearrange the equation for the definition of acceleration, as follows:

vf = vo + at  

Replacing by the values already known for vo, vf and a, and solving for t, we get:

t = vf-vo /a = (29 m/s – 11.2 m/s) / 2.2 m/s = 8 sec

5 0
3 years ago
Other questions:
  • Using any of the bilinear transform, matched pole-zero, or impulse invariance techniques in converting a continuous-time system
    14·2 answers
  • Which of the following vehicles has no emissions?
    9·1 answer
  • Write a method called compFloat5 which accepts as input two doubles as an argument (parameter). Write the appropriate code to te
    9·1 answer
  • 1. The area of the given triangle is 25 square units. What is the value of x?<br> X+2
    8·1 answer
  • Tests reveal that a normal driver takes about 0.75 s before he orshecan react to a situation to avoid a collision. It takes abou
    11·1 answer
  • What is a Planck Distribution and how is it used to solve for black body radiation problems?
    12·1 answer
  • (100 POINTS) {BRIANLIEST} PLEASE HELP ME
    5·1 answer
  • Where would the impossible amount of product 1 and 2 points intersect on the production possibility curve
    6·1 answer
  • Kyla has obtained a bachelor’s degree in electronics engineering. In her search for a job, she comes across an advertisement tha
    11·1 answer
  • Which type of Artificial Intelligence (AI) can repeatedly perform tasks of limited scope?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!