1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodka [1.7K]
3 years ago
13

In your own words, explain how solar heating works

Physics
2 answers:
gogolik [260]3 years ago
8 0
Solar heating works by getting the sunlight in order to make the solar system work, and by doing that it increases energy which is thermal energy.

Hope this helps! :D
mestny [16]3 years ago
4 0

Answer:

active solar heating systems use solar energy to heat a fluid either liquid or air and then transfer the solar heat directly to the interior space or to a storage system for later use. If the solar system cannot provide adequate space heating, an auxiliary or back-up system provides the additional heat.

hope this helps : )

You might be interested in
Infer why the doppler effect can or can not occur in all waves.
Darya [45]

Answer:

it can occur in all waves because all wave have a frequency

8 0
2 years ago
A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts help.
GrogVix [38]

Answer:

H = 532 m

Explanation:

When teacher falls into the cliff then she shout for Help at the same time

so here we know that sound will go down and reflect back up

so here in 3 s distance traveled by the sound

d = vt

d = 340 \times 3

d = 1020 m

now in the same time the distance that teacher will fall down is given as

d_1 = \frac{1}{2}gt^2

d_1 = \frac{1}{2}(9.81)(3^2)

d_1 = 44.1 m

now total distance traveled by teacher and sound in 3 s

d_{total} = d + d_1

d_{total} = 1020 + 44.1

this total distance must be equal to twice the height of the cliff

2H = 1064.1 m

H = 532 m

7 0
3 years ago
Read 2 more answers
Steel blocks A and B, which have equal masses, are at TA = 300 oC and T8 = 400 oC. Block C, with mc - 2mA, is at TC = 350 oC. Bl
shepuryov [24]

Answer:

b) TA = TB = TC

Explanation:

  • When put in contact each other, and isolated, both blocks will exchange heat till they reach to thermal equilibrium.
  • During this process, the body at a higher temperature, will loss heat, tat it will be gained by the other body.
  • The equilibrium condition will be reached when the following equation be met:

       \Delta Q = c_{st}* m_{A} * (T_{fin}  - T_{0A} ) = c_{st}* m_{B} * (T_{0B}  - T_{fin} )

  • Replacing by the values of T₀A = 300º C, and T₀B = 400ºC, and simplifying common terms as mA = mB, we can solve for  Tfin, as follows:

       (400 \ºC - T_{fin}) = (T_{fin} - 300 \ºC) \\ \\  2* T_{fin} = 700\ºC\\ \\ T_{fin} = 350\ºC

  • So, when both blocks reach to equilibrium, they will be at a common final temperature, 350ºC.
  • When put in contact with block C, at the same temperature, at that instant, the three blocks will have the same common temperature of 350 ºC.
  • So, option b) is the right one.
8 0
3 years ago
A 1.2 kg block of wood hangs motionless from strings. A 50 gram bullet, traveling horzontally, strikes the block and becomes emb
Firdavs [7]

Answer:

speed of the bullet before it hit the block is 200 m/s

Explanation:

given data

mass of block m1 = 1.2 kg

mass of bullet m2 = 50 gram = 0.05 kg

combine speed V= 8.0 m/s

to find out

speed of the bullet before it hit the block

solution

we will apply here conservation of momentum that is

m1 × v1 + m2 × v2 = M × V    .............1

here m1 is mass of block and m2 is mass of bullet and v1 is initial speed of block i.e 0 and v2 is initial speed of bullet and M is combine mass of block and bullet and V is combine speed of block and bullet

put all value in equation 1

m1 × v1 + m2 × v2 = M × V

1.2 × 0 + 0.05 × v2 = ( 1.2 + 0.05 ) × 8

solve it we get

v2 = 200 m/s

so speed of the bullet before it hit the block is 200 m/s

8 0
3 years ago
What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.
Studentka2010 [4]

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

4 0
3 years ago
Other questions:
  • According to the exercise principle of balance, a workout should __________.
    14·2 answers
  • Directions: WRITE a summary of the Newton’s Laws of Motion reading.
    11·1 answer
  • A tuning fork vibrates 240 times per second. What is the frequency and period?
    9·1 answer
  • A student performs an experiment and must measure the lengths of four different objects: a textbook, a pencil, a cup, and a piec
    7·2 answers
  • Does anyone wanna be my friend????
    6·2 answers
  • Assume a change at the source of sound reduces the wavelength of a sound wave in air by a factor of 3.
    14·1 answer
  • What direction is centrifugal force to the force that holds the object in a round path of motion?
    7·1 answer
  • A wire 25 m long carries a current of 12 A from west to east. If the magnetic force on the wire due to Earth’s magnetic field is
    9·1 answer
  • Which phenomenon occurs when one wave is superimposed on another ?
    5·2 answers
  • A space ship, initially traveling at a speed of 1,265 m/s, begins to accelerate at a rate of 16
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!