The solubility of carbon dioxide at 400 kPa at room temperature is ;
( B ) 0.61 CO2/L
<u>Given data </u>
pressure of CO₂ = 400 Kpa = 3.95 atm
Kh of CO₂ = 3.3 * 10⁻² mol/L.atm
<h3>Calculate the solubility of carbon dioxide </h3>
Solubility = pressure * Kh value of CO₂
= 3.95 atm * 3.3 * 10⁻² mol / L.atm
= 0.13 mol/l CO₂
= 0.61 CO₂ / L
Hence we can conclude that the solubility of CO₂ at 400 kPa is 0.13 mol/l CO₂.
Learn more about solubility : brainly.com/question/23946616
From the options the closest answer is ( B ) 0.61 CO₂ / L
Answer:
Everything in Earth's system can be placed into one of four major subsystems: land, water, living things, or air. These four subsystems are called "spheres." Specifically, they are the "lithosphere" (land), "hydrosphere" (water), "biosphere" (living things), and "atmosphere" (air).
Explanation:
Answer: Adenine and guanine are the two purines and cytosine, thymine and uracil are the three pyrimidines. The main difference between purines and pyrimidines is that purines contain a sixmembered nitrogencontaining ring fused to an imidazole ring whereas pyrimidines contain only a sixmembered nitrogencontaining ring. They both are types or categories of nitrogen containing bases present in nuclei acids of DNA and RNA.
Purines are 2 Ring or Carbon Ring, Nitrogen containing bases. That consist of these 2 rings next placed next to each other. These examples include - Adenine and Guanine.
Pyrimidines are 1 or single Ring Nitrogen containing structures. There are 3 nitrogenous bases that are categorized as pyrimidines. Cytosine, Thymine, and Uracil.
Answer:
RbOH
Explanation:
For this question, we have to remember what is the definition of a base. A base is a compound that has the <u>ability to produce hydroxyl ions</u>
, so:

With this in mind we can write the <u>reaction for each substance:</u>




The only compound that fits with the definition is
, so this is our <u>base</u>.
I hope it helps!
Answer:
It would be nothing. Quite literally nothing. No Oxygen, no dirt, no anything.
Explanation: