Correct answer is <span>X = ΔH
Reason:
1) The graph of enthalpy Vs reaction coordinate suggest the reaction is endothermic in nature. For endothermic reaction, energy if product is more than that of reactant. Hence, option 1 i.e. </span><span>X = -ΔH cannot be correct.
2) Since the reaction is endothermic in nature, </span>energy if product is more than that of reactant. Hence, option 2 i.e. X = ΔH is correct.
3) Activation energy is energy difference between Reactant (A) and transition state (B). However, as per option C, activation energy (A.E.) is energy difference between product (C) and transition state (B), which is incorrect.
Answer:
A. 35Cl1-
Explanation:
Chlorine needs 1 more electron to have full octet thus will take 1 electron and possess a -1 charge.
The differences in the properties of diamond and graphite is as a result of how their particles are arranged in space. This space arrangement leads to distinct crystal structures for the two compounds. In diamond, the carbon atoms are arranged in tetrahedral shape while in graphite the carbon atoms arrayed in planes.
Hope this helps :)
Answer:
The answer is "
"
Explanation:
Given:
Molarity= number of moles
because it is 1 Liter

therefore,
it takes 20 mL of Tris.


So, take 
The quantity of heat required to vapourize 1 mole of a substance depends on the kind of intermolecular forces between the molecules of the substance. Diethyl ether molecules are held together by weak dispersion forces compared to the stronger hydrogen bonding in ethanol. Therefore, 1 mole of diethyl ether requires less heat to vapourize than is required to vapourize 1 mole of ethanol.
Intermolecular forces hold the molecules a substance together in a given state of matter. The properties of a substance such as boiling point, melting point etc are dependent on the nature of intermolecular forces holding the molecules of the substance.
Diethyl ether molecules are held together by weak dispersion forces while molecules of ethanol are held together by hydrogen bonds.
Since hydrogen bonds are much stronger than dispersion forces, a greater quantity of heat is required to break the intermolecular hydrogen bonds in ethanol in order to vapourize them than is required to vapourize diethyl ether.
Therefore, owing to stronger intermolecular forces between molecules of ethanol, less heat is required to vapourize than is required to vapourize 1 mole of ethanol.
Learn more: brainly.com/question/9328418