Answer:

Explanation:
The model for the turbine can be derived by means of the First Law of Thermodynamics:
![-\dot Q_{out}-\dot W_{out} +\dot m \cdot \left[(h_{in}-h_{out})+\frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) + g\cdot (z_{in}-z_{out})\right] =0](https://tex.z-dn.net/?f=-%5Cdot%20Q_%7Bout%7D-%5Cdot%20W_%7Bout%7D%20%2B%5Cdot%20m%20%5Ccdot%20%5Cleft%5B%28h_%7Bin%7D-h_%7Bout%7D%29%2B%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%28v_%7Bin%7D%5E%7B2%7D-v_%7Bout%7D%5E%7B2%7D%29%20%2B%20g%5Ccdot%20%28z_%7Bin%7D-z_%7Bout%7D%29%5Cright%5D%20%3D0)
The work produced by the turbine is:
![\dot W_{out}=-\dot Q_{out} +\dot m \cdot \left[(h_{in}-h_{out})+\frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) + g\cdot (z_{in}-z_{out})\right]](https://tex.z-dn.net/?f=%5Cdot%20W_%7Bout%7D%3D-%5Cdot%20Q_%7Bout%7D%20%2B%5Cdot%20m%20%5Ccdot%20%5Cleft%5B%28h_%7Bin%7D-h_%7Bout%7D%29%2B%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%28v_%7Bin%7D%5E%7B2%7D-v_%7Bout%7D%5E%7B2%7D%29%20%2B%20g%5Ccdot%20%28z_%7Bin%7D-z_%7Bout%7D%29%5Cright%5D)
The mass flow and heat transfer rates are, respectively:




Finally:


Answer:
a. 164 °F b. 91.11 °C c. 1439.54 kJ
Explanation:
a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?
Since the starting temperature is 48°F and the final temperature which water boils is 212°F, the number of degrees Fahrenheit we would need to raise the temperature is the difference between the final temperature and the initial temperature.
So, Δ°F = 212 °F - 48 °F = 164 °F
b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?
To find the degree change in Celsius, we convert the initial and final temperature to Celsius.
°C = 5(°F - 32)/9
So, 48 °F in Celsius is
°C₁ = 5(48 - 32)/9
°C₁ = 5(16)/9
°C₁ = 80/9
°C₁ = 8.89 °C
Also, 212 °F in Celsius is
°C₂ = 5(212 - 32)/9
°C₂ = 5(180)/9
°C₂ = 5(20)
°C₂ = 100 °C
So, the number of degrees in Celsius you must raise the temperature is the temperature difference between the final and initial temperatures in Celsius.
So, Δ°C = °C₂ - °C₁ = 100 °C - 8.89 °C = 91.11 °C
c. [2 pts] How much energy is required to heat the four quarts of water from
48°F to 212°F (boiling)?
Since we require 15.8 kJ for every degree Celsius of temperature increase of the four quarts of water, that is 15.8 kJ/°C and it rises by 91.11 °C, then the amount of energy Q required is Q = amount of heat per temperature rise × temperature rise = 15.8 kJ/°C × 91.11 °C = 1439.54 kJ
Answer: The five types of the civil engineering projects is construction and management, geotechnical, structural, transport, water, and architecture
Explanation: Hope this helps
Option choice d is the correct answer