Check the power source. Your thermostat may just not be connected right or at all. A blown fuse, tripped circuit breaker or dead batteries will prevent the thermostat from turning on your furnace.
Dirty thermostat? That’ll cause issues. Clean up any dust, dirt, spider webs and other debris. Any of these things can coat the inside of the thermostat and interfere with both electrical and mechanical functions of the thermostat. Put this on your get-ready-for-winter cleaning list. Just use a soft, clean brush to clean the inside components gently. Don’t get anything wet. Also you can use a can of compressed air, such as is used for electronics, to clear debris.
Check for any loose wires or terminal screws inside the thermostat. Make sure wires aren’t corroded or detached. Never remove the thermostat cover without removing the batteries or turning off the power at the fuse or breaker box. Tighten screws and secure loose wires if needed.
It may be time to replace your thermostat is it’s old. They aren’t meant to last forever and an old thermostat may be costing you a lot of money in wasted energy and time spent tinkering with an outdated model. There are great programmable thermostats available now that are easy to use and simple to connect to your existing HVAC system. Click here for more info on programmable thermostats.
Answer:
TDR means Timeout Detection and Recovery.
Explanation:
TDR is a feature of the Windows operating system which detects response problems from a graphics card, and recovers to a functional desktop by resetting the card. If the operating system does not receive a response from a graphics card within a certain amount of time (default is 2 seconds), the operating system resets the graphics card.
Actually what the problem meant about the westward
component of the ball’s displacement is the horizontal component of the
displacement. To help us better understand the problem, I attached a figure of
the situation.
We can see from the figure that to solve for the value of
the horizontal component, we have to make use of the sin function. That is:
sin θ = side opposite to the angle / hypotenuse of the
triangle
sin 42 = x / 40 m
x = (40 m) sin 42
x = 26.77 m
Therefore the ball has a westward
displacement of about 26.77 m
Answer:
x = 7.14 meters
Explanation:
It is given that,
Current in wire 1, 
Current in wire 2,
Distance between parallel wires, r = 25 cm
Let at P point the net magnetic field equal to 0. The magnetic field at a point midway between the is given by :

Let the distance is x from wire 1. So,



x = 7.14 meters
So, the magnetic field will be 0 at a distance of 7.14 meters from wire 1. Hence, this is the required solution.
Answer:

Explanation:
Using:
Force = electric field * charge

Force = magnitude of charge * velocity * magnetic field * sin tither

Force on particle due to electric field:
Force on particle due to magnetic field:

is in the positive x direction as
is in the negative x direction while net force is in the positive x direction.
Magnetic field is in the positive Z direction, net force is in the positive x direction.
According to right hand rule, Force acting on particle is perpendicular to the direction of magnetic field and velocity of particle. This would mean the force is along the y-axis. As this is a negatively charged particle, the direction of the velocity of the particle is reversed. Therefore velocity of particle, v, has to be in the negative y direction.
Now,





