The hydrogen ion concentration [H3O+] in an egg white containing 6.3 × 10-⁷M of [OH-] is 1.5 × 10-⁸M.
<h3>How to calculate [H3O+]?</h3>
The hydrogen ion concentration of a solution can be calculated as follows:
pOH = - log [OH-]
pOH = - log [6.3 × 10-⁷M]
pOH = - [-6.2]
pOH = 6.2
Since pOH + pH = 14
pH = 14 - 6.2
pH = 7.8
pH = - log [H3O+]
7.8 = - log [H3O+]
[H3O+] = 10-⁷:⁸
[H3O+] = 1.5 × 10-⁸M
Therefore, the hydrogen ion concentration [H3O+] in an egg white containing 6.3 × 10-⁷M of [OH-] is 1.5 × 10-⁸M.
Learn more about hydrogen ion concentration at: brainly.com/question/15082545
Answer: The balance of the reaction shifts toward the endothermic reaction.
Explanation:
An ENDOTHERMIC REACTION requires input of HEAT ENERGY to drive it FORWARD from reactants, unto completion of products.
So, on increasing the temperature (available heat) the REVERSIBLE REACTION favors the shifts towards the endothermic reaction
state what the lab is about, that is, what scientific concept (theory, principle, procedure, etc.) you are supposed to be learning about by doing the lab. You should do this briefly, in a sentence or two. If you are having trouble writing the opening sentence of the report, you can try something like: "This laboratory experiment focuses on X…"; "This lab is designed to help students learn about, observe, or investigate, X…." Or begin with a definition of the scientific concept: "X is a theory that…."
2. give the necessary background for the scientific concept by telling what you know about it (the main references you can use are the lab manual, the textbook, lecture notes, and other sources recommended by the lab manual or lab instructor; in more advanced labs you may also be expected to cite the findings of previous scientific studies related to the lab). In relatively simple labs you can do this in a paragraph following the initial statement of the scientific concept of the lab. But in more complex labs, the background may require more paragraphs.
Explanation:
(a) The given data is as follows.
Load applied (P) = 1000 kg
Indentation produced (d) = 2.50 mm
BHI diameter (D) = 10 mm
Expression for Brinell Hardness is as follows.
HB =
Now, putting the given values into the above formula as follows.
HB = =
=
= 200
Therefore, the Brinell HArdness is 200.
(b) The given data is as follows.
Brinell Hardness = 300
Load (P) = 500 kg
BHI diameter (D) = 10 mm
Indentation produced (d) = ?
d =
=
= 4.46 mm
Hence, the diameter of an indentation to yield a hardness of 300 HB when a 500-kg load is used is 4.46 mm.